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preface

Preface and Acknowledgments

Welcome to our online textbook, Computer Networking: A Top-Down Approach. We ( Jim Kurose,
Keith Ross, and Addison-Wesley-Longman) think you will find this textbook to be very different than
the other computer networking books that are currently available. Perhaps the most unique and
innovative feature of thistextbook isthat it is online and accessible through a Web browser. We
believe that our online format has several things going for it. First, an online text can be accessed from
any browser in the world, so a student (or any other reader) can gain access to the book at anytime from
anyplace. Second, as al of us Internet enthusiasts know, much of the best material describing the
intricacies of the Internet isin the Internet itself. Our hyperlinks, embedded in a coherent context,
provide the reader direct access to some of the best sites relating to computer networks and Internet
protocols. The links do not only point to RFCs but also to sites that are more pedagogic in nature,
including home-brewed pages on particular aspects of Internet technology and articles appearing in
online trade magazines. Being online also allows us to include many interactive features, including
direct access to the Traceroute program, direct access to search engines for Internet Drafts, Java applets
that animate difficult concepts, and (in the near future) direct access to streaming audio. Being online
enables us to use more fonts and colors (both within the text and in diagrams), making the text both
perky and cheerful. Finally, an online format will allow usto frequently release new editions (say, every
year), which will enable the text to keep pace with this rapidly changing field.

Another unusual feature of thetext isits Internet focus. Most of the existing textbooks begin with a
broader perspective and address the Internet as just as one of many computer network technologies. We
instead put Internet protocols in the spotlight, and use the Internet protocols as motivation for studying
some of the more fundamental computer networking concepts. But why put the Internet in the spotlight,
why not some other networking technology such as ATM? Most computer networking students have had
already significant "hands on" experience with the Internet (e.g., surfing the Web and sending e-mail at
the very least) before taking a course on computer networks. We have found that modern-day studentsin
computer science and electrical engineering, being intensive users of the Internet, are enormously
curious about what is under the hood of the Internet. Thus, it is easy to get students excited about
computer networking when using the Internet as your guiding vehicle. A second reason for the Internet
focusisthat in recent years computer networking has become synonymous with the Internet. This wasn't
the case five-to-ten years ago, when there was alot of talk about ATM LANSs and applications direclty
interfacing with ATM (without passing through TCP/IP). But we have now reached the point where just
about all datatraffic is carried over the Internet or intranets. Furthermore, streaming audio and video
have recently become commonplace in the Internet, and someday telephony may be too. Because our
book has an Internet focus, it is organized around a five-layer Internet architecture rather than around the
more traditional seven-layer OSI architecture.

Another unique feature of this book isthat it is also top-down in how the content is organized. Aswe
mentioned above, thistext, as amost al computer networks textbooks, uses a layered architectural
model to organize the content. However, unlike other texts, this text begins at the application-layer and
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works its way down the protocol stack. The rationale behind this top-down organization is that once one
understands the applications, one can then understand the network services needed to support these
applications. One can then, in turn, examine the various ways in which such services might be provided/
implemented by a network architecture. Covering applications early thus provides motivation for the
remainder of the text.

An early emphasis on application-layer issues differs from the approaches taken in most other texts,
which have only asmall (or nonexistent) amount of material on network applications, their
requirements, application-layer paradigms (e.g., client/server), and the application programming
interfaces (e.q., sockets). Studying application-layer protocols first allows students to develop an
intuitive feel for what protocols are (the role of message exchange and the actions taken on events) in
the context of network applications (e.g., the Web, FTP and e-mail) which they use daily. Furthermore,
the inclusion of a significant amount of material at the application layer reflects our own belief that there
has been, and will continue to be, a significant growth in emphasis (in the research community, and in
industry) in the higher levels of network architecture. These higher layers -- as exemplified by the Web
as an application layer protocol -- isthe true " growth area’ in computer networking.

This textbook also contains material on application programming development - material not covered
in depth by any introductory computer networks textbook. (While there are books devoted to network
programming, e.g., the texts by Stevens, they are not introductory networking textbooks.) There are
several compelling reasons for including this material. First, anyone wanting to write a network
application must know about socket programming - the material isthus of great practical interest.
Second, early exposure to socket programming is valuable for pedagogical reasons aswell - it allows
students to write actual network application-level programs and gain first-hand experience with many of
thisissues involved in having multiple geographically distributed processes communicate. We present
the material on application programming in a Java context rather than a C context, because socket
programming in Javais simpler, and allows students to quickly see the forest through the trees.

It has been said that computer networking textbooks are even more boring than accounting texts.
Certainly, one seed of truth in the statement is that many books are ssimply a compendium of facts about
amyriad of computer networking technologies and protocols, such as packet formats or service
interfaces (and given the wealth of protocol standards, there is no shortage of such facts!). What is
missing in such accounting-like textbooks is an identification of the important, underlying issues that
must be solved by a network architecture, and a methodical study of the various approaches taken
towards addressing these issues. Many texts focus on what a network does, rather than why. Addressing
the principles, rather than just the dry standards material, can make a textbook more interesting and
accessible. (A sense of humor, use of analogies, and real-world examples aso help.)

Thefield of networking is now mature enough that a number of fundamentally important issues can be
identified. For example, in the transport layer, the fundamental issues include reliable communication
over an unreliable channel, connection establishment/teardown and handshaking, congestion and flow
control, and multiplexing. In the routing layer, two fundamentally important issues are how to find
““good" paths between two routers, and how to deal with large, heterogeneous systems. In the data link
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layer, afundamental problem is how to share a multiple access channel. Thistext identifies
fundamental networking issues as well as approaches towards addressing these issues. We believe
that the combination of using the Internet to get the student's foot in door and then emphasizing the
issues and solution approaches will allow the student to quickly understand just about any networking
technology. For example, reliable data transfer is afundamental issue in both the transport and data link
layer. Various mechanisms (e.g., error detection, use of timeouts and retransmit, positive and negative
acknowledgments, and forward error correction) have been designed to provide reliable data transfer
service. Once one understands these approaches, the data transfer aspects of protocols like TCP and
various reliable multicast protocols can been seen as case studies illustrating these mechanisms.

How an Instructor Can Use this Online Book

This online book can be used as the textbook for a course on computer networking just like any other
textbook. The instructor can assign readings and homework problems, and base lectures on the material
within the text. However, the textbook is also ideally suited for asynchronous online cour ses. Such
courses are particularly appealing to students who commute to school or have difficulty scheduling
classes due to course time conflicts. The authors already have significant experience in leading
asynchronous online courses, using an earlier draft of this online text. They have found that one
successful asynchronous format isto have students do weekly asynchronous readings (and listenings!)
and to have students participate in weekly newsgroup discussions about the readings. Students can have
avirtual presence by sharing the URL s of the their personal Web pages with the rest of the class.
Students can even collaborative on joint projects, such as research papers and network application
development, asynchronously over the Internet. Readers are encouraged to visit the following sites
which are devoted to asynchronous online education:

The Web of Asynchronous L earning Networks

Journal of Asynchronous L earning Networks

Asynchronous L earning Networks M agazine

Acknowledgments
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You'l find links below to overheads (powerpoint files, compressed postscript and PDF format) for the textbook,
Computer Networking: A Top-Down Approach Featuring the Internet, by Jim Kurose and Keith Ross, published by
Addison Wesley Longman. |f you want to find out more about the book, you can check out the on-line version of
the text at http://gaia.cs.umass.edu/kurose/Contents.htm or at http://www.seas.upenn.edu/~ross/book/Contents.htm.

The publisher's WWW site for the book is http://www.awlonline.com/kurose/

Note that the overheads below are being made available in powerpoint format (as well as postscript and pdf, shortly)
so that instructors can modify the overheads to suit their own teaching needs. While we hope that many instructors
will make use of the overheads (regardless of whether or not our text is used for the course), we ask that you use the
overheads for educational purposes only. Please respect the intellectual property represented in the overheads and do
not use them for your own direct commercial benefit.
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Chapter 2: The Application Layer

. chapter2a.ppt (Part 1, powerpoint format, 568K, last update: 21-Dec-99)
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What is the Internet?

1.1 What is the Internet?

In this book we use the public Internet, a specific computer network (and one which probably most readers have used), as our
principle vehicle for discussing computer networking protocols. But what is the Internet? We would like to give you a one-sentence
definition of the Internet, a definition that you can take home and share with your family and friends. Alas, the Internet is very
complex, both in terms of its hardware and software components, as well as the services it provides.

A Nuts and Bolts Description

Instead of giving a one-sentence definition, let's try a more descriptive approach. There are a couple of ways to do this. Oneway is
to describe the nuts and bolts of the Internet, that is, the basic hardware and software components that make up the Internet. Another
way isto describe the Internet in terms of a networking infrastructure that provides services to distributed applications. Let's begin
with the nuts-and-bolts description, using Figure 1.1-1 to illustrate our discussion.

local ISP regional network

router
) server

- workstation

mobile

company network

Figure 1.1-1: Some "pieces’ of the Internet

. Thepublic Internet is aworld-wide computer network, i.e., a network that interconnects millions of computing devices
throughout the world. Most of these computing devices are traditional desktop PCs, Unix-based workstations, and so called
"servers' that store and transmit information such as WWW pages and e-mail messages. Increasingly, non-traditional
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What is the Internet?

computing devices such as Web TV's, mobile computers, pagers and toasters are being connected to the Internet. (Toasters
are not the only rather unusual devices to have been hooked up to the Internet; see the The Future of the Living Room.) In
the Internet jargon, all of these devices are called hosts or end systems. The Internet applications with which many of us
are familiar, such asthe WWW and e-mail, are network application programs that run on such end systems. We will look
into Internet end systems in more detail in section 1.3 and then delve deeply into the study of network applicationsin
Chapter 2.

. End systems, aswell as most other "pieces’ of the Internet, run protocolsthat control the sending and receiving of
information within the Internet. TCP (the Transmission Control Protocol) and | P (the Internet Protocol) are two of the most
important protocols in the Internet. The Internet's principle protocols are collectively known as TCP/IP protocols. We
begin looking into protocolsin section 1.2. But that's just a start --much of this entire book is concerned with computer
network protocols!

. End systems are connected together by communication links. We'll seein section 1.5 that there are many types of
communication links. Links are made up of different types of physical media: coaxia cable, copper wire, fiber optics, and
radio spectrum. Different links can transmit data at different rates. Thelink transmission rate is often called the link
bandwidth, and istypically measured in bits/second.

. Usudly, end systems are not directly attached to each other viaa single communication link. Instead, they are indirectly
connected to each other through intermediate switching devices known asrouters. A router takes information arriving on
one of itsincoming communication links and then forwards that information on one of its outgoing communication links.
The I P protocol specifiesthe format of the information that is sent and received among routers and end systems. The path
that transmitted information takes from the sending end system, through a series of communications links and routers, to the
receiving end system is known as aroute or path through the network. We introduce routing in more detail in section 1.4,
and study the algorithms used to determine routes, as well astheinternal structure of arouter itself, in Chapter 4.

. Rather than provide a dedicated path between communicating end systems, the Internet uses a technique known as packet
switching that allows multiple communicating end systems to share a path, or parts of apath, at the same time. We will see
that packet switching can often use alink more "efficiently" than circuit switching (where each pair of communicating end
systems gets a dedicated path). The earliest ancestors of the Internet were the first packet-switched networks; today's public
Internet is the grande dame of all existing packet-switched networks.

. Thelnternet isrealy anetwork of networks. That is, the Internet is an interconnected set of privately and publicly owned
and managed networks. Any network connected to the Internet must run the IP protocol and conform to certain naming and
addressing conventions. Other than these few constraints, however, a network operator can configure and run its network (i.
e, itslittle "piece" of the Internet) however it chooses. Because of the universal use of the IP protocol in the Internet, the IP
protocol is sometimes referred to as the Internet dail tone.

. Thetopology of the Internet, i.e., the structure of the interconnection among the various pieces of the Internet, isloosely
hierar chical. Roughly speaking, from bottom-to-top, the hierarchy consists of end systems connected to local | nter net
Service Providers (1 SPs) though access networks. An access network may be a so-called local area network within a
company or university, adial telephone line with a modem, or a high-speed cable-based or phone-based access network.
Local ISP'sarein turn connected to regional |SPs, which are in turn connected to national and international 1SPs. The
national and international 1SPs are connected together at the highest tier in the hierarchy. New tiers and branches (i.e., new
networks, and new networks of networks) can be added just as a new piece of Lego can be attached to an existing Lego
construction. In the first half of 1996, approximately 40,000 new network addresses were added to the Internet [Network

1996] - an astounding growth rate.

. At thetechnical and developmental level, the Internet is made possible through creation, testing and implementation of
Internet Standar ds. These standards are developed by the Internet Engineering Task Force (IETF). The IETF standards
documents are called RFCs (request for comments). RFCs started out as general request for comments (hence the name) to
resolve architecture problems which faced the precursor to the Internet. RFCs, though not formally standards, have evolved
to the point where they are cited as such. RFCstend to be quite technical and detailed. They define protocols such as TCP,
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IP, HTTP (for the Web) and SMTP (for open-standards e-mail). There are more than 2000 different RFC's

The public Internet (i.e., the global network of networks discussed above) is the network that one typically refersto asthe Internet.
There are also many private networks, such as certain corporate and government networks, whose hosts are not accessible from (i.
e., they can not exchange messages with) hosts outside of that private network. These private networks are often referred to as
intranets, as they often use the same "internet technology” (e.g., the same types of host, routers, links, protocols, and standards) as
the public Internet.

A Service Description

The discussion above has identified many of the pieces that make up the Internet. Let's now leave the nuts and bolts description and
take a more abstract, service-oriented, view:

. Thelnternet allows distributed applications running on its end systems to exchange data with each other. These
applications include remote login, file transfer, electronic mail, audio and video streaming, real-time audio and video
conferencing, distributed games, the World Wide Web, and much much more [AT& T 1998]. It is worth emphasizing that the
Web is not a separate network but rather just one of many distributed applications that use the communication services
provided by the Internet. The Web could also run over a network besides the Internet. One reason that the Internet is the
communication medium of choice for the Web, however, is that no other existing packet-switched network connects more
than 43 million [Network 1999] computers together and has 100 million or so users [Almanac]. (By the way, determining the
number of computers hooked up to the Internet is a very difficult task, as no one is responsible for maintaining alist of who's
connected. When anew network is added to the Internet, its administrators do not need to report which end systems are
connected to that network. Similarly, an exiting network does not report its changes in connected end systems to any central
authority.)

. Thelnternet provides two services to its distributed applications: a connection-oriented service and a connectionless
service. Loosely speaking, connection-oriented service guarantees that data transmitted from a sender to areceiver will
eventually be delivered to the receiver in-order and in its entirety. Connectionless service does not make any guarantees
about eventual delivery. Typicaly, adistributed application makes use of one or the other of these two services and not
both. We examine these two different servicesin section 1..3 and in great detail in Chapter 3.

. Currently the Internet does not provide a service that makes promises about how long it will take to deliver the data from
sender to receiver. And except for increasing your access bit rate to your Internet Service Provider (ISP), you currently
cannot obtain better service (e.g., shorter delays) by paying more -- a state of affairs that some (particularly Americans!) find
odd. Well take alook at state-of-the art Internet research that is aimed at changing this situation in Chapter 6.

Our second description of the Internet - in terms of the servicesit provides to distributed applications -- is a non-traditional, but
important, one. Increasingly, advancesin the "nuts and bolts" components of the Internet are being driven by the needs of new
applications. So it's important to keep in mind that the Internet is an infrastructure in which new applications are being constantly
invented and deployed.

We have given two descriptions of the Internet, onein terms of the hardware and software components that make up the Internet,
the other in terms of the services it provides to distributed applications. But perhaps you are even more confused as to what the
Internet is. What is packet switching, TCP/IP and connection-oriented service? What are routers? What kinds of communication
links are present in the Internet? What is a distributed application? What does the Internet have to do with children'stoys? If you
feel abit overwhelmed by al of this now, don't worry - the purpose of this book is to introduce you to both the nuts and bolts of the
Internet, as well as the principles that govern how and why it works. We will explain these important terms and questions in the
subsequent sections and chapters.

Some Good Hyperlinks
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Asevery Internet researcher knows, some of the best and most accurate information about the Internet and its protocolsis not in
hard copy books, journals, or magazines. The best stuff about the Internet isin the Internet itself! Of course, there's really too
much material to sift through, and sometimes the gems are few and far between. Below, we list afew generally excellent WWW
sites for network- and Internet-related material. Throughout the book, we will also present links to relevant, high quality URL's
that provide background, original (i.e., acitation), or advanced material related to the particular topic under study. Here is a set of
key links that you will want to consult while you proceed through this book:

Internet Engineering Task Force (IETF): The IETF is an open international community concerned with the devel opment and
operation of the Internet and its architecture. The IETF was formally established by the Internet Architecture Board (IAB) in 1986.
The IETF meets three times ayear; much of its ongoing work is conducted via mailing lists by working groups. Typically, based
upon previous |ETF proceedings, working groups will convene at meetings of the IETF to discuss the work of the IETF working
groups. ThelETF isadministered by the Internet Society, whose WWW site contains lots of high-quality, Internet-related material.

The World Wide Web Consortium (W3C): The W3C was founded in 1994 to develop common protocols for the evolution of the
World Wide Web. This an outstanding site with fascinating information on emerging Web technologies, protocols and standards.

The Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE): These are the

two main international professional societies that have technical conferences, magazines, and journalsin the networking area. The
ACM Specia Interest Group in Data Communications (SIGCOMM), the |EEE Communications Society, and the IEEE Computer

Society are the groups within these bodies whose efforts are most closely related to networking.

Connected: An Internet Encyclopedia: An attempt to take the Internet tradition of open, free protocol specifications, merge it with a

1990s Web presentation, and produce a readable and useful reference to the technical operation of the Internet. The site contains
material on over 100 Internet topics.

Data communications tutorials from the online magazine Data Communications: One of the better magazines for data
communications technology. The site includes many excellent tutorials.

Media History Project: Y ou may be wondering how the Internet got started. Or you may wonder how electrical communications got
started in the first place. And you may even wonder about what preceded electrical communications! Fortunately, the Web contains
an abundance of excellent resources available on these subjects. This site promotes the study of media history from petroglythsto
pixels. It coversthe history of digital media, mass media, electrical media, print media, and even oral and scribal culture.
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1.2.What is a Protocol?

Now that we've got a bit of afeel for what the "Internet” is, let's consider another important word is the
title of this book: "protocol.” What is a protocol? What does a protocol do? How would you recognize a
protocol if you met one?

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by first considering some
human anal ogies, since we humans execute protocols all of the time. Consider what you do when you
want to ask someone for the time of day. A typical exchangeis shown in Figure 1.2-1. Human protocol
(or good manners, at least) dictates that one first offers a greeting (the first "Hi" in Figure 1.2-1) to initiate
communication with someone else. The typical responseto a"Hi" message (at least outside of New Y ork
City) isareturned "Hi" message. Implicitly, one then takes a cordial "Hi" response as an indication that
one can proceed ahead and ask for the time of day. A different responseto theinitial "Hi" (such as "Don't
bother me!”, or "I don't speak English," or an unprintable reply that one might receive in New Y ork City)
might indicate an unwillingness or inability to communicate. In this case, the human protocol would be
to not ask for the time of day. Sometimes one gets no reponse at all to a question, in which case one
typically gives up asking that person for the time. Note that in our human protocol, there are specific
messages we send, and specific actions we take in response to the received reply messages or other
events (such as no reply within some given amount of time). Clearly, transmitted and received messages,
and actions taken when these message are sent or received or other events occur, play acentral rolein a
human protocol. If people run different protocols (e.g., if one person has manners but the other does not,
or if one understands the concept of time and the other does not) the protocols do not interoperate and

no useful work can be accomplished. The sameistruein networking -- it takes two (or more)
communicating entities running the same protocol in order to accomplish atask.

Let's consider a second human analogy. Suppose you're in a college class (a computer networking class,
for example!). The teacher is droning on about protocols and you're confused. The teacher stopsto ask,
"Arethere any questions?' (a message that is transmitted to, and received by, all students who are not
slegping). You raise your hand (transmitting an implicit message to the teacher). Y our teacher
acknowledges you with asmile, saying "Yes....... " (atransmitted message encouraging you to ask your
question - teachers |ove to be asked questions) and you then ask your question (i.e., transmit your
message to your teacher). Y our teacher hears your question (receives your question message) and
answers (transmits areply to you). Once again, we see that the transmission and receipt of messages, and
aset of conventional actions taken when these mesages are sent and received, are at the heart of this
guestion-and-answer protocol.

Network Protocols
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A network protocol is similar to a human protocol, except that the entities exchanging messages and
taking actions are hardware or software components of a computer network, components that we will
study shortly in the following sections. All activity in the Internet that involves two or more
communicating remote entities is governed by a protocol. Protocolsin routers determine a packet's path
from source to destination; hardware-implemented protocols in the network interface cards of two
physically connected computers control the flow of bits on the "wire" between the two computers; a
congestion control protocol controls the rate at which packets are transmitted between sender and
receiver. Protocols are running everywhere in the Internet, and consequently much of this book is about
computer network protocols.
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Figure 1.2-1: A human protocol and a computer network protocol

As an example of acomputer network protocol with which you are probably familiar, consider what
happens when you make arequest to a WWW server, i.e., when you type in the URL of a WWW page
into your web browser. The scenario isillustrated in the right half of Figure 1.2-1. First, your computer
will send a so-called "connection request” message to the WWW server and wait for areply. The WWW
server will eventually receive your connection request message and return a " connection reply" message.
Knowing that it isnow OK to request the WWW document, your computer then sends the name of the
WWW page it wants to fetch from that WWW server in a"get" message. Finally, the WWW server
returns the contents of the WWW document to your computer.

Given the human and networking examples above, the exchange of messages and the actions taken when
these messages are sent and received are the key defining elements of a protocol:

A protocol defines the format and the order of messages exchanged between two or more
communicating entities, as well as the actions taken on the transmission and/or receipt of a message.
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The Internet, and computer networks in general, make extensive use of protocols. Different protocols are
used to accomplish different communication tasks. Asyou read through this book, you will learn that
some protocols are simple and straightforward, while others are complex and intellectually deep.

Mastering the field of computer networking is equivalent to understanding the what, why and how of
networking protocols.

Return to Table Of Contents
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1.3 The Network Edge

In the previous sections we presented a high-level description of the Internet and networking protocols.
We are now going to delve a bit more deeply into the components of the Internet. We begin in this
section at the edge of network and look at the components with which we are most familiar -- the
computers (e.g., PCs and workstations) that we use on adaily basis. In the next section we will move
from the network edge to the network core and examine switching and routing in computer networks.
Then in Section 1.5 we will discuss the actual physical links that carry the signal's sent between the
computers and the switches.

1.3.1 End Systems, Clients and Servers

In computer networking jargon, the computers that we use on adaily basis are often referred to as or
hosts or end systems. They are referred to as "hosts" because they host (run) application-level programs
such as aWeb browser or server program, or an e-mail program. They are also referred to as "end
systems' because they sit at the "edge" of the Internet, as shown in Figure 1.3-1. Throughout this book
we will use the terms hosts and end systems interchangeably, that is, host = end system.

Hosts are sometimes further divided into two categories: clients and servers. Informally, clients often
tend to be desktop PC's or workstations, while servers are more powerful machines. But thereisamore
precise meaning of aclient and a server in computer networking. Inthe so-called client-server model,
aclient program running on one end system requests and receives information from a server running on
another end system. This client-server model is undoubtedly the most prevalent structure for Internet
applications. We will study the client-server model in detail in Chapter 2. The Web, e-mall, file transfer,
remote login (e.g., Telnet), newgroups and many other popular applications adopt the client-server
model. Since aclient typically runs on one computer and the server runs on another computer, client-
server Internet applications are, by definition, distributed applications. The client and the server
interact with each other by communicating (i.e., sending each other messages) over the Internet. At this
level of abstraction, the routers, links and other "pieces' of the Internet serve as a"black box" that
transfers messages between the distributed, communicating components of an Internet application. This
Isthe level of abstraction depicted in Figure 1.3-1.
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Figure 1.3-1: End system Interaction

Computers (e.g., aPC or aworkstation), operating as clients and servers, are the most prevalent type of
end system. However, an increasing number of aternative devices, such as so-called network computers
and thin clients [ Thinworld 1998], Web TV's and set top boxes [Mills 1998], digital cameras, and other
devices are being attached to the Internet as end systems. An interesting discussion of the continuing
evolution of Internet applicationsis[AT& T 1998].

1.3.2 Connectionless and Connection-Oriented Services

We have seen that end systems exchange messages with each other according to an application-level
protocol in order to accomplish some task. The links, routers and other pieces of the Internet provide the
means to transport these messages between the end system applications. But what are the characteristics
of this communication service that is provided? The Internet, and more generally TCP/IP networks,
provide two types of servicesto its applications. connectionless service and connection-oriented
service. A developer creating an Internet application (e.g., an email application, afile transfer
application, a Web application or an Internet phone application) must program the application to use one
of these two services. Here, we only briefly describe these two services; we shall discuss them in much
more detail in Chapter 3, which covers transport layer protocols.
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Connection-Oriented Service

When an application uses the connection-oriented service, the client and the server (residing in different
end systems) send control packets to each other before sending packets with real data (such as e-mail
messages). This so-called handshaking procedure alerts the client and server, alowing them to prepare
for an onslaught of packets. It isinteresting to note that this initial hand-shaking procedure is similar to
the protocol used in human interaction. The exchange of "hi's’ we saw in Figure 1.2-1 is an example of a
human "handshaking protocol” (even though handshaking is not literally taking place between the two
people). Thetwo TCP messages that are exchanged as part of the WWW interaction shown in Figure
1.2-1 are two of the three messages exchanged when TCP sets up a connection between a sender and
receiver. Thethird TCP message (not shown) that forms the final part of the TCP three-way handshake
(see Section 3.7) iscontained inthe get message shown in Figure 1.2-1.

Once the handshaking procedure is finished, a"connection” is said to be established between the two
end systems. But the two end systems are connected in avery loose manner, hence the terminology
"connection-oriented". In particular, only the end systems themselves are aware of this connection; the
packet switches (i.e., routers) within the Internet are completely oblivious to the connection. Thisis
because a TCP connection is nothing more than allocated resources (buffers) and state variablesin the
end systems. The packet switches do not maintain any connection state information.

The Internet's connection oriented service comes bundled with several other services, including reliable
datatransfer, flow control and congestion control. By reliable data transfer, we mean that an
application can rely on the connection to deliver all of its data without error and in the proper order.
Reliability in the Internet is achieved through the use of acknowledgments and retransmissions. To get a
preliminary idea about how the Internet implements the reliable transport service, consider an
application that has established a connection between end systems A and B. When end system B
receives a packet from A, it sends an acknowledgment; when end system A receivesthe
acknowledgment, it knows that the corresponding packet has definitely been received. When end
system A doesn't receive an acknowledgment, it assumes that the packet it sent was not received by B; it
therefore retransmits the packet.Flow control makes sure that neither side of a connection overwhelms
the other side by sending too many packets too fast. Indeed, the application at one one side of the
connection may not be able to process information as quickly asit receives the information. Therefore,
thereisarisk of overwhelming either side of an application. The flow-control service forces the sending
end system to reduce its rate whenever there is such arisk. We shall see in Chapter 3 that the Internet
implements the flow control service by using sender and receiver buffersin the communicating end
systems. The Internet's congestion contr ol service helps prevent the Internet from entering a state of
grid lock. When a router becomes congested, its buffers can overflow and packet loss can occur. In such
circumstances, if every pair of communicating end systems continues to pump packets into the network
asfast asthey can, gridlock setsin and few packets are delivered to their destinations. The Internet

avoids this problem by forcing end systems to diminish the rate at which they send packets into the
network during periods of congestion. End systems are alerted to the existence of severe congestion
when they stop receiving acknowledgments for the packets they have sent.
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We emphasize here that although the Internet's connection-oriented service comes bundled with reliable
datatransfer, flow control and congestion control, these three features are by no means essential
components of a connection-oriented service. A different type of computer network may provide a
connection-oriented service to its applications without bundling in one or more of these features. Indeed,
any protocol that performs handshaking between the communicating entities before transferring datais a
connection-orieinted service [Iren].

The Internet's connection-oriented service has a name -- TCP (Transmission Control Protocol); the
initial version of the TCP protocol is defined in the Internet Request for Comments RFC 793 [RFC 793].
The services that TCP provides to an application include reliable transport, flow control and congestion
control. It isimportant to note that an application need only care about the servicesthat are provided; it
need not to worry about how TCP actually implements reliability, flow control, or congestion control.
We, of course, are very interested in how TCP implements these services and we shall cover these topics
in detail in Chapter 3.

Connectionless Service

There is no handshaking with the Internet's connectionless service. When one side of an application
wants to send packets to another side of an application, the sending application simply sends the
packets. Since there is no handshaking procedure prior to the transmission of the packets, data can be
delivered faster. But there are no acknowledgments either, so a source never knows for sure which
packets arrive at the destination. Moreover, the service makes no provision for flow control or
congestion control. The Internet's connectionless serviceis provided by UDP (User Datagram
Protocol); UDP isdefined in the Internet Request for Comments RFC 768 [RFC 768].

Most of the more familiar Internet applications use TCP, the Internet's connection-oriented service.
These applications include Telnet (remote login), SMTP (for electronic mail), FTP (for file transfer), and
HTTP (for the Web). Nevertheless, UDP, the Internet's connectionless service, is used by many
applications, including many of the emerging multimedia applications, such as Internet phone, audio-on-
demand, and video conferencing.
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The Network Core

1.4 The Network Core

Having examined the endsystems and end-end transport service model of the Internet in section 1.3, let
us now delve more deeply into the "inside" of the network. In this section we study the network core --
the mesh of routers that interconnect the Internet's endsystems. Figure 1.4-1 highlights the network core
inred.

company network

Figure 1.4-1: The network core

1.4.1 Circuit Switching, Packet Switching and Message
Switching

There are two fundamental approaches towards building a network core: circuit switching and packet
switching. In circuit-switched networks, the resources needed along a path (buffers, link bandwidth) to
provide for communication between the endsystems are reserved for the duration of the session. In
packet-switched networks, these resources are not reserved; a session's messages use the resource on
demand, and as a consequence, may have to wait (i.e., queue) for access to acommunication link. Asa
simple analogy, consider two restaurants -- one which requires reservations and another which neither
requires reservations nor accepts them. For the restaurant that requires reservations, we have to go
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through the hassle of first calling (or sending an e-mail!) before we leave home. But when we arrive at
the restaurant we can, in principle, immediately communicate with the waiter and order our meal. For
the restaurant that does not require reservations, we don't need to bother to reserve atable. But when we
arrive at the restaurant, we may have to wait for atable before we can communicate with the waiter.

The ubiquitous tel ephone networks are examples of circuit-switched networks. Consider what happens

when one person wants to send information (voice or facsimile) to another over atelephone network.
Before the sender can send the information, the network must first establish a connection between the
sender and the receiver. In contrast with the TCP connection that we discussed in the previous section,
this is abonafide connection for which the switches on the path between the sender and receiver
maintain connection state for that connection. In the jargon of telephony, this connectioniscalled a
circuit. When the network establishes the circuit, it also reserves a constant transmission rate in the
network's links for the duration of the connection. This reservation alows the sender to transfer the data
to the receiver at the guaranteed constant rate.

Today's Internet is a quintessential packet-switched network. Consider what happens when one host
wants to send a packet to another host over a packet-switched network. As with circuit-switching, the
packet is transmitted over a series of communication links. But with packet-switching, the packet is sent
into the network without reserving any bandwidth whatsoever. If one of the links is congested because
other packets need to be transmitted over the link at the same time, then our packet will have to waitin a
buffer at the sending side of the transmission line, and suffer adelay. The Internet makes its best effort
to deliver the datain atimely manner. But it does not make any guarantees.

Not all telecommunication networks can be neatly classified as pure circuit-switched networks or pure
packet-switched networks. For example, for networks based on the ATM technology, aconnection can
make areservation and yet its messages may still wait for congested resources! Nevertheless, this
fundamental classification into packet- and circuit-switched networks is an excellent starting point in
understanding telecommunication network technology.

Circuit Switching

This book is about computer networks, the Internet and packet switching, not about telephone networks
and circuit switching. Nevertheless, it isimportant to understand why the Internet and other computer
networks use packet switching rather than the more traditional circuit-switching technology used in the
telephone networks. For this reason, we now give a brief overview of circuit switching.

Figure 1.4-2 illustrates a circuit-switched network. In this network the three circuit switches are
interconnected by two links; each of these links has n circuits, so that each link can support n
simultaneous connections. The endsystems (e.g., PCs and workstations) are each directly connected to
one of the switches. (Ordinary telephones are al'so connected to the switches, but they are not shownin
the diagram.) Notice that some of the hosts have analog access to the switches, whereas others have
direct digital access. For analog access, amodem is required. When two hosts desire to communicate,
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the network establishes a dedicated end-to-end circuit between two hosts. (Conference calls between
more than two devices are, of course, aso possible. But to keep things simple, let's suppose for now that
there are only two hosts for each connection.) Thusin order for host A to send messagesto host B, the
network must first reserve one circuit on each of two links.

1 e !
2 ircuit Dircuit
Switch Switch

Each link consisting of o "oircuits"
(FDM or TDM )

M

Circuit
Switrh
Cigital link [2.9., I5DH 4 Kb p .
dedicated to termingl An':‘_l‘:'g link [=.9., ETEE'E: Kkps)
"g"'---.... dedicated to terminal
| | e L = I*u\|
‘:ullllllllll i o, i
“:-:,_@‘:f:-——_“‘& : 'f.."-.._'a.mﬁ,"' **'_j.u_h..._"“"‘““rﬁa‘.‘_ﬁ-- =
___;,.." _..--:“

Figure 1.4-2: A simple circuit-switched network consisting of three circuit
switches interconnected with two links. Each link has n circuits; each end-to-end
circuit over alink gets the fraction 1/n of the link's bandwidth for the duration of
the circuit. The ncircuitsin alink can be either TDM or FDM circuits.

A circuit in alink isimplemented with either frequency division multiplexing (FDM) or time-division
multiplexing (TDM). With FDM, the frequency spectrum of alink is shared among the connections
established across the link. Specifically, the link dedicates afrequency band to each connection for the
duration of the connection. In telephone networks, this frequency band typically has awidth of 4 kHz.
The width of the band is called, not surprisingly, the bandwidth. FM radio stations also use FDM to
share microwave frequency spectrum.
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The trend in modern telephony isto replace FDM with TDM. The magjority of the links in most
telephone systems in the United States and in other developed countries currently employ TDM. For a
TDM link, timeisdivided into frames of fixed duration and each frame is divided into a fixed number of
time slots. When the network establish a connection across a link, the network dedicates one time slot in
every frame to the connection. These slots are dedicated for the sole use of that connection, with atime
slot available for use (in every frame) to transmit the connection's data.

Figure 1.4.3 illustrates FDM and TDM for a specific network link. For FDM, the frequency domainis
segmented into a number of circuits, each of bandwidth 4 KHz (i.e., 4,000 Hertz or 4,000 cycles per
second). For TDM, the time domain is segmented into four circuits; each circuit is assigned the same
dedicated slot in the revolving TDM frames. The transmission rate of the frame is equal to the frame rate
multiplied by the number of bitsin aslot. For example, if the link transmits 8,000 frames per second and
each dlot consists of 8 bits, then the transmission rate is 64 Kbps.

ink

W——

2ot | Frome: |

All slots abelled ' are dedicated fo
d specific sender-receiver pair.

Figure 1.4-3: With FDM, each circuit continuously gets a fraction of the
bandwidth. With TDM, each circuit gets all of the bandwidth periodically
during brief intervals of time (i.e., during slots).

Proponents of packet switching have always argued that circuit switching is wasteful because the
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dedicated circuits are idle during silent periods. For example, when one of the conversantsin a
telephone call stops talking, the idle network resources (frequency bands or slotsin the links along the
connection's route) cannot be used by other ongoing connections. As another example of how these
resources can be underutilized, consider a radiologist who uses a circuit-switched network to remotely
access a series of x-rays. The radiologist sets up a connection, requests an image, contemplates the
image, and then requests a new image. Network resources are wasted during the radiologist's
contemplation periods. Proponents of packet switching also enjoy pointing out that establishing end-to-
end circuits and reserving end-to-end bandwidth is complicated and requires complex signaling software
to coordinate the operation of the switches along the end-to-end path.

Before we finish our discussion of circuit switching, let's work through a numerical example that should
shed further insight on the matter. Let us consider how long it takes to send afile of 640 Kbits from host
A to host B over acircuit-switched network. Suppose that all linksin the network use TDM with 24
slots and have bit rate 1.536 Mbps. Also suppose that it takes 500 msec to establish an end-to-end circuit
before A can begin to transmit the file. How long does it take to send the file? Each circuit has a
transmission rate of (1.536 Mbps)/24 = 64 Kbps, so it takes (640 Khbits)/(64 Kbps) = 10 seconds to
transmit the file. To this 10 seconds we add the the circuit establishment time, giving 10.5 seconds to
send the file. Note that the transmission time is independent of the number links: the transmission time
would be 10 seconds if the end-to-end circuit passes through one link or one-hundred links. AT& T Labs
provides an interactive site [AT& T 1998] to explore transmission delay for various file types and

transmission technologies.

Packet Switching

We saw in sections 1.2 and 1.3. that application-level protocols exchange messages in accomplishing
their task. Messages can contain anything the protocol designer desires. Messages may perform a
control function (e.g., the "hi" messages in our handshaking example) or can contain data, such as an
ASCII file, aPostscript file, a Web page, adigital audio file. In modern packet-switched networks, the
source breaks long messages into smaller packets. Between source and destination, each of these
packets traverse communication links and packet switches (also known as routers). Packets are
transmitted over each communication link at arate equal to the full transmission rate of the link. Most
packet switches use store and forward transmission at the inputs to the links. Store-and-forward
transmission means that the switch must receive the entire packet before it can begin to transmit the first
bit of the packet onto the outbound link. Thus store-and-forward packet-switches introduce a stor e-and-
forward delay at the input to each link along the packet's route. This delay is proportional to the
packet's length in bits. In particular, if a packet consists of L bits, and the packet is to be forwarded onto
an outbound link of R bps, then the store-and-forward delay at the switch is L/R seconds.

Within each router there are multiple buffers (also called queues), with each link having an input buffer
(to store packets that have just arrived to that link) and an output buffer. The output buffers play a key
role in packet switching. If an arriving packet needs to be transmitted across alink but finds the link

busy with the transmission of another packet, the arriving packet must wait in the output buffer. Thus, in
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addition to the store-and-forward delays, packets suffer output buffer queueing delays. These delays
are variable and depend on the level of congestion in the network. Since the amount of buffer spaceis
finite, an arriving packet may find that the buffer is completely filled with other packets waiting for
transmission. Inthis case, packet losswill occur - either the arriving packet or one of the already-
gueued packets will be dropped. Returning to our restaurant analogy from earlier in this section, the
gueueing delay is analogous to the amount of time one spends waiting for atable. Packet lossis
analogous to being told by the waiter that you must leave the premises because there are already too
many other people waiting at the bar for atable.

Figure 1.4-4 illustrates a simple packet-switched network. Suppose Hosts A and B are sending packets
to Host E. Hosts A and B first send their packets along 28.8 Kbps links to the first packet switch. The
packet switch directs these packets to the 1.544 Mbps|link. If there is congestion at this link, the packets
gueue in the link's output buffer before they can be transmitted onto the link. Consider now how Host A
and Host B packets are transmitted onto this link. As shown in Figure 1.4-4, the sequence of A and B
packets does not follow any periodic ordering; the ordering is random or statistical -- packets are sent
whenever they happen to be present at the link. For this reason, we often say that packet switching
employs statistical multiplexing. Statistical multiplexing sharply contrasts with time-division
multiplexing (TDM), for which each host gets the same slot in arevolving TDM frame.
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Figure 1.4-4: Packet switching

Let us now consider how long it takes to send a packet of L bits from host A to another host across a
packet-switched network. Let us suppose that there are Q links between A and E, each of rate R bps.
Assume that queueing delays and end-to-end propagation delays are negligible and that thereis no
connection establishment. The packet must first be transmitted onto the first link emanating from host A;
thistakes L/R seconds. It must then be transmitted on each of the Q-1 remaining links, that is, it must be
stored-and-forwarded Q-1 times. Thus the total delay is QL/R.

Packet Switching versus Circuit Switching

Having described circuit switching and packet switching, let us compare the two. Opponents of packet
switching have often argued that the packet switching is not suitable for real-time services (e.g.,
telephone calls and video conference calls) due to its variable and unpredictable delays. Proponents of
packet switching argue that (1) it offers better sharing of bandwidth than circuit switching and (2) itis
simpler, more efficient, and less costly to implement than circuit-switching. Generally speaking, people
who do not like to hassle with restaurant reservations prefer packet switching to circuit switching.
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Why is packet-switching more efficient? Let us look at a ssimple example. Suppose users share a1 Mbps
link. Also suppose that each user alternates between periods of activity (when it generates data at a
constant rate of 100K bits/sec) and periods of inactivity (when it generates no data). Suppose further
that a user is active only 10% of the time (and is idle drinking coffee during the remaining 90% of the
time). With circuit-switching, 100 Kbps must be reserved for each user at all times. Thus, the link can
support only ten simultaneous users. With packet switching, if there are 35 users, the probability that
there are 10 or more simultaneously active usersis less than .0004. If there are 10 or less simultaneously
active users (which happens with probability .9996), the aggregate arrival rate of datais less than 1IMbps
(the output rate of the link). Thus, users packets flow through the link essentially without delay, asis
the case with circuit switching. When there are more than 10 simultaneously active users, then the
aggregate arrival rate of packets will exceed the output capacity of the link, and the output queue will
begin to grow (until the aggregate input rate falls back below 1Mbps, at which point the queue will

begin to diminish in length). Because the probability of having ten or more simultaneously active users
iIsvery very small, packet-switching almost always has the same delay performance as circuit switching,
but does so while allowing for more than three times the number of users.

Although packet switching and circuit switching are both very prevalent in today's telecommunication
networks, the trend is certainly in the direction of packet switching. Even many of today's circuit-
switched telephone networks are slowly migrating towards packet switching. In particular, telephone
networks often convert to packet switching for the expensive overseas portion of atelephone call.

Message Switching

In a modern packet-switched network, the source host segments long messages into smaller packets and
sends the smaller packets into the network; the receiver reassembles the packets back into the original
message. But why bother to segment the messages into packets in the first place, only to have to
reassembl e packets into messages? Doesn't this place an additional and unnecessary burden on the
source and destination? Although the segmentation and reassembly do complicate the design of the
source and receiver, researchers and network designers concluded in the early days of packet switching
that the advantages of segmentation greatly compensate for its complexity. Before discussing some of
these advantages, we need to introduce some terminology. We say that a packet-switched network
performs message switching if the sources do not segment messages, i.e., they send a message into the
network as awhole. Thus message switching is a specific kind of packet switching, whereby the packets
traversing the network are themselves entire messages.

Figure 1.4-5 illustrates message switching in aroute consisting of two packet switches (PSs) and three
links. With message switching, the message staysin tact asit traverses the network. Because the
switches are store-and-forward packet switches, a packet switch must receive the entire message before
it can begin to forward the message on an outbound link.
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Figure 1.4-5: A simple message-switched network

Figure 1.4-6 illustrates packet switching for the same network. In this example the original message has
been divided into five distinct packets. In Figure 1.4-6, the first packet has arrived at the destination, the
second and third packets are in transit in the network, and the last two packets are still in the source.
Again, because the switches are store-and-forward packet switches, a packet switch must receive an
entire packet before it can begin to forward the packet on an outbound link.

| I 7] F —

SoUrce FS Fs destination

Figure 1.4-6: A simple packet-switched network

One major advantage of packet switching (with segmented messages) is that it achieves end-to-end
delays that are typically much smaller than the delays associated with message-switching. We illustrate
this point with the following simple example. Consider a message that is 7.5 Mbits long. Suppose that
between source and destination there are two packet switches and three links, and that each link has a
transmission rate of 1.5Mbps. Assuming there is no congestion in the network, how much timeis
required to move the message from source to destination with message switching? It takes the source 5
seconds to move the message from the source to the first switch. Because the switches use store-and-
forward, the first switch cannot begin to transmit any bits in the message onto the link until thisfirst
switch has received the entire message. Once the first switch has received the entire message, it takes 5
seconds to move the message from the first switch to the second switch. Thusit takes ten secondsto
move the message from the source to the second switch. Following this logic we see that atotal of 15
seconds is needed to move the message from source to destination. These delays areillustrated in Figure
1.4-7.
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Figure 1.4-7: Timing of message transfer of a 7.5 Mbit message in a message-switched network

Continuing with the same example, now suppose that the source breaks the message into 5000 packets,
with each packet being 1.5 Kbits long. Again assuming that there is no congestion in the network, how
long does it take to move the 5000 packets from source to destination? It takes the source 1 msec to
move the first packet from the source to the first switch. And it takes the first switch 1 msec to move this
first packet from the first to the second switch. But while the first packet is being moved from the first
switch to the second switch, the second packet is simultaneously moved from the source to the first
switch. Thus the second packet reaches the first switch at time = 2 msec. Following thislogic we see that
the last packet is completely received at the first switch at time = 5000 msec = 5 seconds. Since this last
packet has to be transmitted on two more links, the last packet is received by the destination at 5.002

seconds..
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Figure 1.4-8: Timing of packet transfer of a 7.5 Mbit message, divided into 5000 packets, in a packet-
switched network

Amazingly enough, packet-switching has reduced the message-switching delay by afactor of three! But
why isthis so? What is packet-switching doing that is different from message switching? The key
difference is that message switching is performing sequential transmission whereas packet switching is
performing parallel transmission. Observe that with message switching, while one node (the source or
one of the switches) is transmitting, the remaining nodes are idle. With packet switching, once the first
packet reaches the last switch, three nodes transmit at the same time.

Packet switching has yet another important advantage over message switching. As we will discuss later
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in this book, bit errors can be introduced into packets as they transit the network. When a switch detects
an error in a packet, it typically discards the entire packet. So, if the entire message is a packet and one
bit in the message gets corrupted, the entire message is discarded. If, on the other hand, the messageis
segmented into many packets and one bit in one of the packetsis corrupted, then only that one packet is
discarded.

Packet switching is not without its disadvantages, however, with respect to message switching. We will
see that each packet or message must carry, in addition to the data being sent from the sending
application to the receiving application, an amount of control information. Thisinformation, whichis
carried in the packet or message header, might include the identity of the sender and receiver and a
packet or message identifier (e.g., number). Since the amount of header information would be
approximately the same for a message or a packet, the amount of header overhead per byte of datais
higher for packet switching than for message switching.

Before moving on to the next subsection, you are highly encouraged to explore the Message Switching
Java Applet. This applet will allow you to experiment with different message and packet sizes, and will
allow you to examine the effect of additional propagation delays.

1.4.2 Routing in Data Networks

There are two broad classes of packet-switched networks: datagram networks and virtual-circuit
networks. They differ according to whether they route packets according to host destination addresses
or according to virtual circuit numbers. We shall call any network that routes packets according to host
destination addresses a datagram networ k. The IP protocol of the Internet routes packets according to
the destination addresses; hence the Internet is a datagram network. We shall call any network that
routes packets according to virtual-circuit numbers avirtual-cir cuit networ k. Examples of packet-
switching technologies that use virtual circuits include X.25, framerelay, and ATM.

Virtual Circuit Networks

A virtua circuit (VC) consists of (1) apath (i.e., aseries of links and packet switches) between the
source and destination hosts, (2) virtual circuit numbers, one number for each link along the path, and
(3) entriesin VC-number trand ation tables in each packet switch along the path. OnceaVC is
established between source and destination, packets can be sent with the appropriate VC numbers.
Because a VC has adifferent VC number on each link, an intermediate packet switch must replace the
VC number of each traversing packet with a new one. The new VC number is obtained from the VC-
number trandation table.

To illustrate the concept, consider the network shown in Figure 1.4-9. Suppose host A requests that the
network establish aVVC between itself and host B. Suppose that the network chooses the pathA - PS1 -
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PS2 - B and assigns VC numbers 12, 22, 32 to the three links in this path. Then, when a packet as part of
this VC leaves host A, the value in the VC number field is 12; when it leaves PS1, the valueis 22; and
when it leaves PS2, the value is 32. The numbers next to the links of PS1 are the interface numbers.

PS5 P

Figure 1.4-9: A ssimple virtua circuit network

How does the switch determine the replacement VC number for a packet traversing the switch? Each
switch has aVC number trandation table; for example, the VC number transation table in PS 1 might
look something like this:

Incoming Incoming Outgoing Outgoing
Interface VC# Interface VC#

1 12 3 22

2 63 1 18

3 7 2 17

1 97 3 87

Whenever anew VC is established across a switch, an entry is added to the VC number table. Similarly,
whenever aV C terminates, the entries in each table along its path are removed.
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Y ou might be wondering why a packet doesn't just keep the same V C number on each of the links along
its route? The answer to this question is twofold. First, by replacing the number from link to link, the
length of the VC field is reduced. Second, and more importantly, by permitting a different VC number
for each link along the path of the VC, a network management function is simplified. Specifically, with
the multiple VC numbers, each link in the path can choose a VC number independently of what the other
links in the path chose. If acommon number were required for al links along the path, the switches
would have to exchange and process a substantial number of messages to agree on the VC number to be
used for a connection.

If anetwork employs virtual circuits, then the network's switches must maintain state information for
the ongoing connections. Specifically, each time a new connection is established across a switch, anew
connection entry must be added to the switch's VC-number tranglation table; and each time a connection
Is released, an entry must be removed from the table. Note that even if thereisno VC number
trandation, it is still necessary to maintain state information that associates VC numbers to interface
numbers. The issue of whether or not a switch or router maintains state information for each ongoing
connection isacrucial one - one which we return to shortly below.

Datagram Networks

Datagam networks are analogous in many respects to the postal services. When a sender sends a | etter
to a destination, the sender wraps the letter in an envelope and writes the destination address on the
envelope. This destination address has a hierarchical structure. For example, letters sent to alocation in
the United States include the country (the USA), the state (e.g., Pennsylvania), the city (e.g.,
Philadelphia), the street (e.g., Walnut Street) and the number of the house on the street (e.g., 421). The
postal services use the address on the envelope to route the letter to its destination. For example, if the
letter is sent from France, then a postal office in France will first direct the letter to a postal center in the
USA. This postal center in the USA will then send the letter to a postal center in Philadelphia. Finally a
mail person working in Philadel phiawill deliver the letter to its ultimate destination.

In a datagram network, each packet that traverses the network contains in its header the address of the
destination. Aswith postal addresses, this address has a hierarchical structure. When a packet arrives at a
packet switch in the network, the packet switch examines a portion of the packet's destination address
and forwards the packet to an adjacent switch. More specifically, each packet switch has a routing table
which maps destination addresses (or portions of the destination addresses) to an outbound link. When a
packet arrives at switch, the switch examines the address and indexes its table with this address to find
the appropriate outbound link. The switch then sends the packet into this outbound link.

The whole routing process is also analogous to the car driver who does not use maps but instead prefers
to ask for directions. For example, suppose Joe is driving from Philadelphiato 156 Lakeside Drivein
Orlando, Florida. Joe first drivesto his neighborhood gas station and asks how to get to 156 Lakeside
Drivein Orlando, Florida. The gas station attendant extracts the Florida portion of the address and tells
Joe that he needs to get onto the interstate highway 1-95 South, which has an entrance just next to the gas
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station. He also tells Joe that once he enters Florida he should ask someone else there. Joe then takes |-
95 South until he gets to Jacksonville, Florida, at which point he asks another gas station attendant for
directions. The attendant extracts the Orlando portion of the address and tells Joe that he should continue
on 1-95 to Daytona Beach and then ask someone else. In Daytona Beach another gas station attendant
also extracts the Orlando portion of the address and tells Joe that he should take |-4 directly to Orlando.
Joe takes |-4 and gets off at the Orlando exit. Joe goes to another gas station attendant, and this time the
attendant extracts the Lakeside Drive portion of the address, and tells Joe the road he must follow to get
to Lakeside Drive. Once Joe reaches Lakeside Drive he asks akid on a bicycle how to get to his
destination. The kid extracts the 156 portion of the address and points to the house. Joe finally reaches
his ultimate destination.

We will be discussing routing in datagram networks in great detail in this book. But for now we mention
that, in contrast with VC networks, datagram networks do not maintain connection state information in
their switches. In fact, a switch in a pure datagram network is completely oblivious to any flows of
traffic that may be passing through it -- it makes routing decisions for each individual packet. Because

V C networks must maintain connection state information in their switches, opponents of VC networks
argue that VC networks are overly complex. These opponents include most researchers and engineersin
the Internet community. Proponents of VC networks feel that V Cs can offer applications awider variety
of networking services. Many researchers and engineersin the ATM community are outspoken
advocates for VCs.

How would you like to actually see the route packets take in the Internet? We now invite you to get your
hands dirty by interacting with the Traceroute program.

Network Taxonomy

We have now introduced several important networking concepts. circuit switching, packet switching,
message switching, virtual circuits, connectionless service, and connection oriented service. How doesiit
all fit together?

First, in our simple view of the World, a telecommunications network either employs circuit-switching
or packet-switching:
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Figure 1.4-10: highest-level distinction among telecommunication networks: circuit-switched or packet-
switched?

A link in acircuit-switched network can employ either FDM or TDM:

CirCuUit-switcheo
nehiorks

C FDM C TDM

—_— — — —

Figure 1.4-11: Circuit switching implementation: FDM or TDM?

Packet switch networks are either virtual-circuit networks or datagram networks. Switchesin virtual-
circuit networks route packets according to the packets' VC numbers and maintain connection state.
Switches in datagram networks route packets according to the packets' destination addresses and do not
maintain connection state:
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Figure 1.4-12: Packet switching implementation: virtual circuits or datagrams?

Examples of packet-switched networks which use VCsinclude X.25, framerelay, and ATM. A packet-
switched network either (1) uses VCsfor al of its message routing, or (2) uses destination addresses for
all of its message routing. It doesn't employ both routing techniques. (This last statement isabit of a
white lie, as there are networks that use datagram routing "on top of" VC routing. Thisisthe case for "IP
over ATM," aswe shall cover later in the book.)

A datagram network is not, however, either a connectionless or a connection-oriented network. Indeed, a
datagram network can provide the connectionless service to some of its applications and the connection-
oriented service to other applications. For example, the Internet, which is a datagram network, isa
datagram network that provides both connectionless and connection-oriented service to its applications.
We saw in section 1.3 that these services are provided in the Internet by the UDP and TCP protocols,
respectively. Networks with VCs - such as X.25, Frame Relay, and ATM - are always, however,

connection-oriented.

Return to Table Of Contents
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Message Switching

Interactive Java Applet:

Message Switching & Packet Switching

Thisinteractive applet enables you to actually see why packet switching can have much smaller delays
than message switching when packets pass through store-and-forward switches. In this applet there are
four nodes: a source (node A), a destination (node B), and two store-and-forward switches. Each packet
sent from the source must be transmitted over three links before it reaches the destination. Each of these
links has atransmission rate of 4 Kbps and an optional propagation delay of one second.

Each small rectangle represents 1 Kbit of data. When you press Start, the rectangles are grouped into one
packet in the transmit buffer of the source. The packet is transmitted to the first switch, where it must be
stored before it isforwarded. The packet then continues towards the destination.

To ssimulate message switching, set the packet size equal to the message size. To simulate packet
switching, set the packet size to less than the message size. To examine the effect of link propagation
delays, check the appropriate boxes for optional propagation delays. For avariety of scenarios, it is
highly recommended that you cal culate the end-to-end delay analytically and then verify your
calculation with the applet.
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Tracing Routes in the Internet

Traceouteisapopular program for tracing a packet's route from any source host to any destination host
in the Internet. Before we explain what traceroute does and how it works, first try running the
traceroute program. In the box below, enter the name of any host, such as surf.eurecomf.fr or www.mit.
edu. The host name that you enter will be sent to a server located at IBM Israel in Tel-Aviv, Israel. The
host in Tel-Aviv will respond with the route taken from Tel-Aviv to the host you have listed in the box
below. After running the program, return to this page for a discussion of the traceroute program.

Host address or name Submit

Leave empty to find the route to your browser.

After having traced the route from Tel-Aviv to your favorite host, try it again with a new starting place
-- Dana Point in sunny southern California

Host address or name || Submit

What Traceroute Does and How It Works

The main packet switchesin the Internet are called router s, and routers use datagram routing.
Specifically, when a source constructs a packet, it appends the destination address onto the packet.
When the packet arrives at arouter, the switch determines the appropriate outgoing link for the packet
by examining the packet's destination address.

Traceroute is alittle program that can run in any Internet host. When the user specifies a destination host
name, the program sends multiple packets towards that destination. As these packets work their way
towards the destinations, they pass through a series of routers. When arouter receives one of these
packets, it sends a little message back to the source. This message contains the name and address of the
router.

More specifically, suppose there are N-1 routers between the soruce and the destination. Then the source
will send N packets into the network, with each packet addressed to the ultimate destination. These
packets are also marked 1 through N, with the first of the N packets marked 1 and the last of the N
packets marked N. When the nth router receives the nth packet marked n, the router destroys the packet
and sends a message to the source. And when the destination host receives the Nth packet, the
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destination destoysit as well, but again returns a message back to the source. The source records the
time that elapses from when it sends a packet until when it receives the corresponding return message; it
also records the name and address of the router (or the destination host) that returns the message. In this
manner, the source can reconstruct the route taken by packets flowing from source to destination, and
the source can determine the round-trip delays to all the intervening routers. Traceroute actually repeats
the experiment just described three times, so the source actually sends 3* N packets to the destination.

The [RFC 1393] describes traceout in detail. The Internet Encyclopedia as also gives an overview of
how traceroute works.

Here is an example of the output of the traceroute program, where the route is being traced from the
source host eniac.seas.upenn.edu (at the University of Pennsylvania) to diane.ibp.fr (at the University of
Paris V1). The output has six columns: the first column is the n value described above, i.e., the number

of the router along the route; the second column is the name of the router; the third column is the address
of the router (of the form xxx.xxx.xxx.xxx); the last three columns are the round-trip delays for three
experiments. If the source receives less than three messages from any given router, because of packet
loss in the network, traceroute places an asterisk just after the router number and reports less than three
round-trip times for that router.

1 GW.CIS.UPENN.EDU (130.91.6.254) 3ms2 ms 1 ms

2 DEFAULT7-GW.UPENN.EDU (165.123.247.8) 3ms1 ms2 ms
3192.204.183.1 (192.204.183.1) 3ms4 ms3 ms

4 border2-hssi 1-0.WestOrange.mci.net (204.70.66.5) 6 ms 6 ms 6 ms
5 corel-fddi-1.WestOrange.mci.net (204.70.64.33) 7 ms 6 ms 6 ms

6 somerouter.sprintlink.net (206.157.77.106) 16 ms 305 ms 192 ms

7 somerouter.sprintlink.net (206.157.77.106) 20 ms 196 ms 18 ms

8 d-dc-6-H2/0-T3.sprintlink.net (144.228.10.33) 19 ms 18 ms 24 ms
9198.67.0.1 (198.67.0.1) 19 ms 24 ms 18 ms

10 gsl-dc-3-Fddi0/0.gsl.net (204.59.144.197) 19 ms 18 ms 20 ms

11 * raspail-ip.eurogate.net (194.206.207.6) 133 ms 94 ms
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12 raspail-ip2.eurogate.net (194.206.207.57) 93 ms 95 ms 97 ms
13 194.206.207.17 (194.206.207.17) 200 ms 94 ms 209 ms

14 stamandl.renater.ft.net (192.93.43.185) 105 ms 101 ms 105 ms
15 stlambert.rerif.ft.net (192.93.43.117) 108 ms 102 ms 95 ms

16 dantonl.rerif.ft.net (193.48.53.50) 110 ms 97 ms 91 ms

17 u-jussieu-paris.rerif.ft.net (193.48.58.122) 94 ms 96 ms 100 ms
18 r-jusren.reseau.jussieu.fr (192.44.54.126) 100 ms 94 ms 100 ms
19 r-ibp.reseau.jussieu.fr (134.157.254.250) 96 ms 100 ms 94 ms
20 masi.ibp.fr (132.227.60.23) 121 ms 100 ms 97 ms

21 * diane.ibp.fr (132.227.64.48) 105 ms 102 ms

In the above trace there are no routers between the source and the destination. Most of these routers have
aname, and all of them have addresses. For example, the name of router 8 is sl-dc-6-H2/0-T3.sprintlink.
net and its addressis 144.228.10.33. Looking at the data provided for this same router, we see that in the
first of the three trials the roundtrip delay between the source and the router 8 was 19 msec. The
roundtrip delays for the subsequent two trials were 18 and 24 msec. These roundtrip delays include
packet propagation delays, router processing delays, and queueing delays due to congestion in the
Internet. Because the congestion is varying with time, the roundtrip delay to arouter n can actually be
longer than the roundtrip delay to router n+ 1. Note in the above example that thereisabig jump in the
round-trip delay when going from router 10 to router 11. Thisis because the link between routers 10 and
11 isatransatlantic link.

Want to try out traceroute from some other starting points besides Tel-Aviv and Dana Point? Then visit
Y ahoo's List of sites offering route tracing.

References

[RFC 1393] G. Mdkin, "Traceroute Using an |P Option," RFC 1393, January 1993.
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1.5 Access Networks and Physical Media

In sections 1.3 and 1.4 we have examined the roles of end systems and routers in a network architecture. In this section we
consider the access network - the physical link(s) that connect an end system to its edge router, i.e., the first router on a path
from the end system to any other distant end system.. Since access network technology is closely tied to physical media
technology (fiber, coaxial pair, twisted pair telephone wire, radio spectrum), we consider these two topics together in this
section.

1.5.1 Access Networks

Figure 1.5-1 shows the access networks' links highlighted in red.

local ISP regional network
| X

AN

company network

Figure 1.5-1: Access networks

Access networks can be loosely divided into three categories:

. residential access networks, connecting a home end system into the network;
. Ingtitutional access networks, connecting an end system in a business or educational institution into the network;
. mobile access networ ks, connecting a mobile end system into the network

These categories are not hard and fast; some corporate end systems may well use the access network technology that we ascribe
to residential access networks, and vice versa. Our descriptions below are meant to hold for the common (if not every) case.

Residential Access Networks

A residential access network connects a home end system (typically a PC, but perhapsaWeb TV or other residential system) to
an edge router. Probably the most common form of home accessis using amodem over a POTS (plain old telephone system)
dialup line to an Internet service provider (ISP). The home modem converts the digital output of the PC into analog format for
transmission over the analog phone line. A modem in the ISP converts the analog signal back into digital form for input to the
ISP router. In this case, the "access network” is simply a point-to-point dialup link into an edge router. The point-to-point link
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isyour ordinary twisted-pair phone line. (We will discuss twisted pair later in this section.) Today's modem speeds allow dialup
access at rates up to 56 Kbps. However, due to the poor quality of twisted-pair line between many homes and | SPs, many users
get an effective rate significantly less than 56 Kbps. For an in depth discussion of the practical aspects of modems see the
Institute for Global Communications (1GC) web page on Modems and Data Communications.

While dialup modems require conversion of the end system's digital datainto analog form for transmission, so-called
narrowband | SDN technology (Integrated Services Digital Network) [Pacific Bell 1998] alows for all-digital transmission of
datafrom a home end system over ISDN "telephone” lines to a phone company central office. Although ISDN was originally
conceived as away to carry digital datafrom one end of the phone system to another, it is aso an important network access
technology that provides higher speed access (e.g., 128 Kbps) from the home into a data network such asthe Internet. Inthis
case, ISDN can be thought of simply as a "better modem" [NAS 1995]. A good source for additional WWW information on
ISDN is Dan Kegel's ISDN page.

Dialup modems and narrowband ISDN are aready widely deployed technologies. Two new technologies, Asymmetric Digital
Subscriber Line (ADSL) [ADSL 1998] and hybrid fiber coaxial cable (HFC) [Cable 1998] are currently being deployed.
ADSL is conceptually similar to dialup modems: it is a new modem technology again running over existing twisted pair
telephone lines, but can transmit at rates of up to about 8 Mbps from the | SP router to a home end system. The datarate in the
reverse direction, from the home end system to the central office router, islessthan 1 Mbps. The asymmetry in the access
speeds givesrise to the term "Asymmetric" in ADSL. The asymmetry in the data rates reflects the belief that home users are
more likely to be a consumer of information (bringing data into their homes) than a producer of information.

ADSL uses frequency division multiplexing, as described in the previous section. In particular, ADSL dividesthe
communication link between the home the ISP into three non-overlapping frequency bands:

o ahigh-speed downstream channel, in the 50 KHz to 1 MHz band,;
o amedium-speed upstream channel, in the 4 KHz to 50 KHz band;
o and an ordinary POTstwo-way telephone channel, in the 0 to 4 KHz band.

One of the features of ADSL isthat the service allows the user to make an ordinary telephone call, using the POTs channel,
while simultaneously surfing the Web. This feature is not available with standard dailup modems. The actually amount of
downstream and upstream bandwidth available to the user is afunction of the distance between the home modem and the | SP
modem, the gauge of the twisted pair line, and the degree of electrical interference. For a high-quality line with negligible
electrical interference, an 8 Mbps downstream transmission rate is possible if the distance between the home and the ISP isless
than 3,000 meters; the downstream transmission rate drops to about 2 Mbps for a distance of 6,000 meters. The upstream rate
ranges from 16 Kbpsto 1 Mbps.

While ADSL, I1SDN and dailup modems all use ordinary phone lines, HFC access networks are extensions of the current cable
network used for broadcasting cabletelevision. In atraditional cable system, a cable head end station broadcasts through a
distribution of coaxial cable and amplifiersto residences. (We discuss coaxial cable later in this chapter.) Asillustrated in
Figure 1.5-2, fiber optics (also to be discussed soon) connect the cable head end to neighborhood-level junctions, from which
traditional coaxial cableisthen used to reach individual houses and apartments. Each neighborhood juncture typically supports
500 to 5000 homes.
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Figure 1.5-2: A hybrid fiber-coax access network

Aswith ADSL, HFC requires special modems, called cable modems. Companies that provide cable Internet access require
their customers to either purchase or lease a modem. One such company is CyberCable, which uses Motorola's CyberSurfer
Cable Modem and provides high-speed Internet access to most of the neighborhoods in Paris. Typically, the cable modem isan
external device and connects to the home PC through a 10-BaseT Ethernet port. (We will discuss Ethernet in great detail in
Chapter 5.) Cable modems divide the HFC network into two channels, a downstream and an upstream channel. Aswith
ADSL, the downstream channel is typically allocated more bandwidth and hence a larger transmission rate. For example, the
downstream rate of the CyberCable system is 10 Mbps and the upstream rate is 768 Kbps. However, with HFC (and not with
ADSL), these rates are shared among the homes, as we discuss below.

One important characteristic of the HFC isthat it is a shared broadcast medium. In particular, every packet sent by the headend
travels downstream on every link to every home; and every packet sent by a home travels on the upstream channel to the
headend. For thisreason, if several users are receiving different Internet videos on the downstream channel, actual rate at which
each user receivesits video will be significantly less than downstream rate. On the other hand, if al the active users are Web
surfing, then each of the users may actually receive Web pages at the full downstream rate, as a small collection of users will
rarely receive a Web page at exactly the same time. Because the upstream channel is also shared, packets sent by two different
homes at the same time will collide, which further decreases the effective upstream bandwidth. (We will discuss this collision
issue in some detail when we discuss Ethernet in Chapter 5.) Advocates of ADSL are quick to point out that ADSL is a point-
to-point connection between the home and ISP, and therefore all the ADSL bandwidth is dedicated rather than shared. Cable
advocates, however, argue that a reasonably dimensioned HFC network provides higher bandwidths than ADSL [@Home
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1998]. The battle between ADSL and HFC for high speed residential access has clearly begun, e.g., [@Home 1998].

Enterprise Access Networks

In enterprise access networks, alocal area network (LAN) is used to connect an end system to an edge router. Aswe will see
in Chapter 5, there are many different types of LAN technology. However, Ethernet technology is currently by far the most
prevalent access technology in enterprise networks. Ethernet operates 10 Mbps or 100Mbps (and now even at 1 Gbps). It uses
either twisted-pair copper wire are coaxia cable to connect a number of end systems with each other and with an edge router.
The edge router is responsible for routing packets that have destinations outside of that LAN. Like HFC, Ethernet uses a
shared medium, so that end users share the the transmission rate of the LAN. More recently, shared Ethernet technology has
been migrating towards switched Ethernet technology. Switched Ethernet uses multiple coaxial cable or twisted pair Ethernet
segments connected at a"switch" to allow the full bandwidth an Ethernet to be delivered to different users on the same LAN
simultaneously [Cisco 1998]. We will explore shared and switched Ethernet in some detail in Chapter 5.

Mobile Access Networks

Mobile access networks use the radio spectrum to connect a mobile end system (e.g., alaptop PC or aPDA with awireless
modem) to a base station, as shown in Figure 1.5-1. This base station, in turn, is connected to an edge router of a data network.

An emerging standard for wireless data networking is Cellular Digital Packet Data (CDPD) [Wireless 1998]. Asthe name
suggests, a CDPD network operates as an overlay network (i.e., as a separate, smaller "virtual" network, as a piece of the larger
network) within the cellular telephone network. A CDPD network thus uses the same radio spectrum as the cellular phone
system, and operates at speedsin the 10's of Kbits per second. As with cable-based access networks and shared Ethernet,
CDPD end systems must share the transmission media with other CDPD end systems within the cell covered by a base station.
A media access control (MAC) protocol is used to arbitrate channel sharing among the CDPD end systems; we will cover
MAC protocolsin detail in Chapter 5.

The CDPD system supports the IP protocol, and thus allows an IP end system to exchange | P packets over the wireless channel
with an IP base station. A CDPD network can actually support multiple network layer protocols; in addition to IP, the 1ISO
CNLP protocol is aso supported. CDPD does not provide for any protocols above the network layer. From an Internet
perspective, CDPD can be viewed as extending the Internet dialtone (i.e., the ability to transfer IP packets) across awireless
link between a mobile end system and an Internet router. An excellent introduction to CDPD is [Waung 98].

1.5.2 Physical Media

In the previous subsection we gave an overview of some of the most important access network technologies in the Internet.
While describing these technol ogies, we also indicated the physical media used. For example, we said that HFC uses a
combination of fiber cable and coaxia cable. We said that ordinary modems, ISDN, and ADSL use twisted-pair copper wire.
And we said that mobile access network use the radio spectrum. In this subsection we provide a brief overview of these and
other transmission media that are commonly employed in the Internet.

In order to define what is meant by a"physical medium,”, let us reflect on the brief life of abit. Consider a bit traveling from
one end system, through a series of links and routers, to another end system. This poor bit gets transmitted many, many times!
The source end-system first transmits the bit and shortly thereafter the first router in the series receives the bit; the first router
then transmits the bit and shortly afterwards the second router receives the bit, etc. Thus our bit, when traveling from source to
destination, passes through a series of transmitter-receiver pairs. For each transmitter-receiver pair, the bit is sent by
propagating el ectromagnetic waves across a physical medium. The physical medium can take many shapes and forms, and
does not have to be of the same type for each transmitter-receiver pair aong the path. Examples of physical mediainclude
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twisted-pair copper wire, coaxia cable, multimode fiber optic cable, terrestria radio spectrum and satellite radio spectrum.
Physical mediafall into two categories: guided media and unguided media. With guided media, the waves are guided along a
solid medium, such as a fiber-optic cable, atwisted-pair cooper wire or a coaxial cable. With unguided media, the waves
propagate in the atmosphere and in outer space, such asin adigital satellite channel or in a CDPD system.

Some Popular Physical Media

Suppose you want to wire a building to allow computers to access the Internet or an intranet -- should you use twisted-pair
copper wire, coaxial cable, or fiber optics? Which of these media gives the highest bit rates over the longest distances? We
shall address these questions below.

But before we get into the characteristics of the various guided medium types, let us say afew words about their costs. The
actual cost of the physical link (copper wire, fiber optic cable, etc.) is often relatively minor compared with the other
networking costs. In particular, the labor cost associated with the installation of the physical link can be orders of magnitude
higher than the cost of the material. For this reason, many buildersinstall twisted pair, optical fiber, and coaxia cable to every
room in abuilding. Even if only one medium isinitially used, thereis agood chance that another medium could be used in the
near future, and so money is saved but not having to lay additional wires.

Twisted-Pair Copper Wire

The least-expensive and most commonly-used transmission medium is twisted-pair copper wire. For over one-hundred years it
has been used by telephone networks. In fact, more than 99% of the wired connections from the telephone handset to the local
telephone switch use twisted-pair copper wire. Most of us have seen twisted pair in our homes and work environments. Twisted
pair consists of two insulated copper wires, each about 1 mm thick, arranged in aregular spiral pattern; see Figure 1.5-3. The
wires are twisted together to reduce the electrical interference from similar pairs close by. Typically, anumber of pairs are
bundled together in a cable by wrapping the pairsin a protective shield. A wire pair constitutes a single communication link.

T — e —
Figure 1.5-3: Twisted Pair

Unshielded twisted pair (UTP) iscommonly used for computer networks within a building, that is, for local area networks
(LANS). Datarates for LANs using twisted pair today range from 10 Mbps to 100 Mbps. The data rates that can be achieved
depend on the thickness of the wire and the distance between transmitter and receiver. Two types of UTP are common in
LANSs: category 3 and category 5. Category 3 corresponds to voice-grade twisted pair, commonly found in office buildings.
Office buildings are often prewired with two or more parallel pairs of category 3 twisted pair; one pair is used for telephone
communication, and the additional pairs can be used for additional telephone lines or for LAN networking. 10 Mbps Ethernet,
one of the most prevalent LAN types, can use category 3 UTP. Category 5, with its more twists per centimeter and Teflon
insulation, can handle higher bit rates. 100 Mbps Ethernet running on category 5 UTP has become very popular in recent
years. In recent years, category 5 UTP has become common for preinstallation in new office buildings.

When fiber-optic technology emerged in the 1980s, many people disparaged twisted-pair because of its relatively low bit rates.
Some people even felt that fiber optic technology would completely replace twisted pair. But twisted pair did not give up so
easily. Modern twisted-pair technology, such as category 5 UTP, can achieve datarates of 100 Mbps for distances up to afew
hundred meters. Even higher rates are possible over shorter distances. In the end, twisted-pair has emerged as the dominant
solution for high-speed LAN networking.

Asdiscussed in Section 1.5.1, twisted-pair is also commonly used for residential Internet access. We saw that dial-up modem
technology enables access at rates of up to 56 Kbps over twisted pair. We aso saw that ISDN is available in many
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communities, providing access rates of about 128 Kbps over twisted pair. We also saw that ADSL (Asymmetric Digital
Subscriber Loop) technology has enabled residential users to access the Web at rates in excess of 6 Mbps over twisted pair.

Coaxial-Cable

Like twisted pair, coaxial cable consists of two copper conductors, but the two conductors are concentric rather than parallel.
With this construction and a special insulation and shielding, coaxial cable can have higher bit rates than twisted pair. Coaxial
cable comesin two varieties: baseband coaxial cable and broadband coaxial cable.

Baseband coaxial cable, aso called 50-ohm cable, is about a centimeter thick, lightweight, and easy to bend. It is commonly
used in LANS; in fact, the computer you use at work or at school is probably connected to a LAN with either baseband coaxial
cable or with UTP. Take alook at the the connection to your computer's interface card. If you see a telephone-like jack and
some wire that resembles telephone wire, you are using UTP; if you see a T-connector and a cable running out of both sides of
the T-connector, you are using baseband coaxial cable. The terminology "baseband”" comes from the fact that the stream of bits
is dumped directly into the cable, without shifting the signal to a different frequency band. 10 Mbps Ethernets can use either
UTP or baseband coaxial cable. Aswe will discuss in the Chapter 5, it isalittle more expensive to use UTP for 10 Mbps
Ethernet, as UTP requires an additional networking device, called a hub.

Broadband coaxial cable, also caled 75-ohm cable, is quite a bit thicker, heavier, and stiffer than the baseband variety. It was
once commonly used in LANs and can still be found in some older installations. For LANS, baseband cable is now preferable,
sinceit isless expensive, easier to physically handle, and does not require attachment cables. Broadband cable, however, is
quite common in cable television systems. Aswe saw in Section 1.5.1, cable television systems have been recently been
coupled with cable modems to provide residential users with Web access at rates of 10 Mbps or higher. With broadband
coaxial cable, the transmitter shiftsthe digital signal to a specific frequency band, and the resulting analog signal is sent from
the transmitter to one or more receivers. Both baseband and broadband coaxial cable can be used as a guided shared medium.
Specifically, anumber of end systems can be connected directly to the cable, and all the end systems receive whatever any one
of the computers transmits. We will look at thisissue in more detail in Chapter 5.

Fiber Optics

An optical fiber isathin, flexible medium that conducts pulses of light, with each pulse representing a bit. A single optical
fiber can support tremendous bit rates, up to tens or even hundreds of gigabits per second. They are immune to electromagnetic
interference, have very low signal attenuation up to 100 kilometers, and are very hard to tap. These characteristics have made
fiber optics the preferred long-haul guided transmission media, particularly for overseas links. Many of the long-distance
telephone networks in the United States and el sewhere now use fiber optics exclusively. Fiber opticsis aso prevalent in the
backbone of the Internet. However, the high cost of optical devices -- such as transmitters, receivers, and switches -- has
hindered their deployment for short-haul transport, such asinaLAN or into the homein aresidential access network. AT& T
Labs provides an excellent site on fiber optics, including several nice animations.

Terrestrial and Satellite Radio Channels

Radio channels carry signals in the electromagnetic spectrum. They are an attractive media because require no physical "wire"
to beinstalled, can penetrate walls, provide connectivity to a mobile user, and can potentially carry asignal for long distances.
The characteristics aradio channel depend significantly on the propagation environment and the distance over which asignal is
to be carried. Environmental considerations determine path loss and shadow fading (which decrease in signal strength asit
travels over a distance and around/through obstructing objects), multipath fading (due to signal reflection off of interfering
objects), and interference (due to other radio channels or electromagnetic signals).

Terrestrial radio channels can be broadly classified into two groups: those that operate as local area networks (typicaly
spanning 10's to a few hundred meters) and wide-area radio channels that are used for mobile data services (typically operating
within ametropolitan region). A number of wireless LAN products are on the market, operating in the 1 to 10's of Mbps range.
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Access Networks and Physical Media

Mobile data services (such as the CDPD standard we touched on in section 1.3), typically provide channelsthat operate at 10's
of Kbps. See [Goodman 97] for asurvey and discussion of the technology and products.

A communication satellite links two or more earth-based microwave transmitter/receivers, known as ground stations. The
satellite receives transmissions on one frequency band, regenerates the signal using a repeater (discussed below), and transmits
the signal on another frequency. Satellites can provide bandwidths in the gigabit per second range. Two types of satellites are
used in communications. geostationary satellites and low-altitude satellites.

Geostationary satellites permanently remain above the same spot on the Earth. This stationary presence is achieved by placing
the satellite in orbit at 36,000 kilometers above the Earth's surface. This huge distance between from ground station though
satellite back to ground station introduces a substantial signal propagation delay of 250 milliseconds. Nevertheless, satellites
links are often used in telephone networks and in the backbone of the Internet.

Low-altitude satellites are placed much closer to the Earth and do not remain permanently above one spot on the Earth. They
rotate around the Earth just as the Moon rotates around the Earth. To provide continuous coverage to an area, many satellites to
be placed in orbit. There are currently many low-altitude communication systems in development. The Iridium system, for
example, consists of 66 low-altitude satellites. Lloyd's satellite constellations provides and collects information on Iridium as
well as other satellite constellation systems. The low-altitude satellite technology may be used for Internet access sometimein
the future.

Return to Table Of Contents
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Delay and Lossin Packet-Switched Networks

1.6 Delay and Loss in Packet-Switched Networks

Having now briefly considered the major "pieces’ of the Internet architecture - the applications, end
systems, end-to-end transport protocols, routers, and links - let us now consider what can happen to a
packet as it travels from its source to its destination. Recall that a packet starts in a host (the source),
passes through a series of routers, and ends its journey in another host (the destination). As a packet
travels from one node (host or router) to the subsequent node (host or router) along this path, the packet
suffers from several different types of delays at each node along the path. The most important of these
delays are the nodal processing delay, queuing delay, transmission delay and propagation delay;
together, these delays accumulate to give atotal nodal delay. In order to acquire a deep understanding
of packet switching and computer networks, we must understand the nature and importance of these

delays.

router C

upstream = router — = router
hode A — B

¥

router D

Figure 1.6-1: The delay through router A

Let us explore these delays in the context of Figure 1.6-1. As part of its end-to-end route between source
and destination, a packet is sent from the upstream node through router, A, to router B. Our goal isto
characterize the nodal delay at router A. Note that router A has three outbound links, one leading to
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router B, another leading to router C, and yet another leading to router D. Each link is preceded a queue
(also known as a buffer). When the packet arrives at router A (from the upstream node), router A
examines the packet's header to determine the appropriate outbound link for the packet, and then directs
the packet to thelink. In this example, the outbound link for the packet is the one that |eads to router B.
A packet can only be transmitted on alink if there is no other packet currently being transmitted on the
link and if there are no other packets preceding it in the queue; if thelink is currently busy or if there are
other packets aready queued for the link, the newly arriving packet will then join the queue.

The time required to examine the packet's header and determine where to direct the packet is part of the
processing delay. The processing delay can also include other factors, such as the time needed to check
for bit-level errorsin the packet that occurred in transmitting the packet's bits from the upstream router
to router A. After this nodal processing, the router directs the packet to the queue that precedes the link
to router B. (In section 4.7 we will study the details of how arouter operates.) At the queue, the packet
experiences aqueuing delay asit waits to be transmitted onto the link. The queuing delay of a specific
packet will depend on the number of other, earlier-arriving packets that are queued and waiting for
transmission across the link; the delay of a given packet can vary significantly from packet to packet. If
the queue is empty and no other packet is currently being transmitted, then our packet's queuing delay is
zero. On the other hand, if the traffic is heavy and many other packets are also waiting to be transmitted,
the queuing delay will belong. We will see shortly that the number of packets that an arriving packet
might expect to find on arrival (informally, the average number of queued packets, which is proportional
to the average delay experienced by packets) is afunction of the intensity and nature of the traffic
arriving to the queue.

Assuming that packets are transmitted in first-come-first-serve manner, as is common in the Internet, our
packet can be transmitted once al the packets that have arrived before it have been transmitted. Denote
the length of the packet by L bits and denote the transmission rate of the link (from router A to router B)
by R bits/sec. The rate R is determined by transmission rate of the link to router B. For example, for a 10
Mbps Ethernet link, the rate is R=10 Mbps; for a 100 Mbps Ethernet link, the rate is R=100 Mbps. The
transmission delay (also called the store-and-forward delay, as discussed in Section 1.4) isL/R. Thisis
the amount of time required to transmit all of the packet's bits into the link.

Once abit is pushed onto the link, it needs to propagate to router B. The time required to propagate from
the beginning of the link to router B is the propagation delay. The bit propagates at the propagation
speed of the link. The propagation speed depends on the physical medium of the link (i.e., multimode
fiber, twisted-pair copper wire, etc.) and is in the range of

2*108 meters/sec to 3*108 meters/sec,
egual to, or alittle less than, the speed of light. The propagation delay is the distance between two
routers divided by the propagation speed. That is, the propagation delay is d/s, where d is the distance

between router A and router B and sis the propagation speed of the link. Once the last bit of the packet
propagates to node B, it and all the preceding bits of the packet are stored in router B. The whole
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process then continues with router B now performing the forwarding.

Newcomers to the field of computer networking sometimes have difficulty understanding the difference
between transmission delay and propagation delay. The difference is subtle but important. The
transmission delay is the amount of time required for the router to push out the packet; it is a function of
the packet's length and the transmission rate of the link, but has nothing to do with the distance between
the two routers. The propagation delay, on the other hand, isthe time it takes a bit to propagate from
one router to the next; it is afunction of the distance between the two routers, but has nothing to do with
the packet's length or the transmission rate of the link.

An analogy might clarify the notions of transmission and propagation delay. Consider a highway which
has atoll booth every 100 kilometers. Y ou can think of the highway segments between toll booths as
links and the toll booths as routers. Suppose that carstravel (i.e., propagate) on the highway at arate of
100 km/hour (i.e., when a car leaves atoll booth it instantaneously accelerates to 100 km/hour and
maintains that speed between toll booths). Suppose that there is a caravan of 10 carsthat are traveling
together, and that these ten cars follow each other in afixed order. Y ou can think of each car asabit and
the caravan as a packet. Also suppose that each toll booth services (i.e., transmits) a car at arate of one
car per 12 seconds, and that it is late at night so that the caravan's cars are only cars on the highway.
Finally, suppose that whenever the first car of the caravan arrives at atoll booth, it waits at the entrance
until the nine other cars have arrived and lined up behind it. (Thus the entire caravan must be "stored" at
the toll booth before it can begin to be "forwarded".) The time required for the toll booth to push the
entire caravan onto the highway is 10/(5 cars/minute) = 2 minutes. Thistime is analogous to the
transmission delay in arouter. The time required for a car to travel from the exit of onetoll booth to the
next toll booth is 100 Km/(100 km/hour) = 1 hour. Thistime is analogous to propagation delay.
Therefore the time from when the caravan is "stored" in front of atoll booth until the caravan is " stored"
in front of the next toll booth isthe sum of "transmission delay" and "the propagation delay" - in this
example, 62 minutes.

Let's explore this analogy a bit more. What would happen if the toll-booth service time for a caravan
were greater than the time for a car to travel between toll booths? For example, suppose cars travel at
rate 1000 km/hr and the toll booth services cars at rate one car per minute. Then the traveling delay
between toll boothsis 6 minutes and the time to serve a caravan is 10 minutes. In this case, the first few
carsin the caravan will arrive at the second toll booth before the last cars in caravan leave the first toll
booth. This situation also arises in packet-switched networks - the first bitsin a packet can arrive at a
router while many of the remaining bits in the packet are still waiting to be transmitted by the preceding
router.

If welet dyroc, dgueuer dirans aNd dyrqp denote the processing, queuing, transmission and propagation
delays, then the total nodal delay is given by

Onodal = dproc + dgueye * Girans + Aorop -
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The contribution of these delay components can vary significantly. For example, dy,q,, can be negligible

(e.g., acouple of microseconds) for alink connecting two routers on the same university campus;
however, dyq, is hundreds of milliseconds for two routers interconnected by a geostationary satellite

link, and can be the dominant term in d,,o4q. Similarly, dy.gns Can be range from negligible to significant.

Its contribution is typically negligible for transmission rates of 10 Mbps and higher (e.g., for LANS);
however, it can be hundreds of milliseconds for large Internet packets sent over 28.8 kbps modem links.
The processing delay, dproc , is often negligible; however, it strongly influences a router's maximum
throughput, which is the maximum rate at which arouter can forward packets.

Queuing Delay

The most complicated and interesting component of nodal delay isthe queuing delay dq e IN fact,

gueuing delay is so important and interesting in computer networking that thousands of papers and
numerous of books have been written about it [Bertsekas 1992] [Daigle 1991] [Kleinrock 1975]

[Kleinrock 1976] [Ross 1995]! We only give a high-level, intuitive discussion of queuing delay here; the

more curious reader may want to browse through some of the books (or even eventually write a Ph.D.
thesis on the subject!). Unlike the other three delays (namely, dproc , dyans and dyqp ), the queuing

delay can vary from packet to packet. For example, if ten packets arrive to an empty queue at the same
time, the first packet transmitted will suffer no queuing delay, while the last packet transmitted will
suffer arelatively large queuing delay (while it waits for the other nine packets to be transmitted).
Therefore, when characterizing queuing delay, one typically uses statistical measures, such as average
gueuing delay, variance of queuing delay and the probability that the queuing delay exceeds some
specified value.

When isthe queuing delay big and when isit insignificant? The answer to this question depends largely
on the rate at which traffic arrives to the queue, the transmission rate of the link, and the nature of the
arriving traffic, i.e., whether the traffic arrives periodically or whether it arrivesin bursts. To gain some
insight here, let a denote the average rate at which packets arrive to the queue (a is units of packets/sec).
Recall that Risthe transmission rate, i.e., it isthe rate (in bits/sec) at which bits are pushed out of the
gueue. Also suppose, for simplicity, that all packets consist of L bits. Then the average rate at which bits
arrive to the queue is La bits/sec. Finally, assume that the queue is very big, so that it can hold
essentially an infinite number of bits. Theratio La/R, called the traffic intensity, often plays an
important role in estimating the extent of the queuing delay. If La/R > 1, then the average rate at which
bits arrive to the queue exceeds the rate at which the bits can be transmitted from the queue. In this
unfortunate situation, the queue will tend to increase without bound and the queuing delay will approach
infinity! Therefore, one of the golden rulesin traffic engineering is: design your system so that the traffic
intensity is no greater than one.

Now consider the case La/R =< 1. Here, the nature of the arriving traffic impacts the queuing delay. For
example, if packets arrive periodically, i.e., one packet arrives every L/R seconds, then every packet will
arrive to an empty queue and there will be no queuing delay. On the other hand, if packets arrive in
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bursts but periodically, there can be a significant average queuing delay. For example, suppose N
packets arrive at the same time every (L/R)N seconds. Then the first packet transmitted has no queuing
delay; the second packet transmitted has a queuing delay of L/R seconds; and more generally, the nth
packet transmitted has a queuing delay of (n-1)L/R seconds. We leave it as an exercise for the reader to
calculate the average queuing delay in this example.

The two examples described above of periodic arrivals are a bit academic. Typically the arrival process
to aqueueisrandom, i.e., the arrivals do not follow any pattern; packets are spaced apart by random
amounts of time. In this more redlistic case, the quantity La/R is not usually sufficient to fully
characterize the delay statistics. Nonetheless, it is useful in gaining an intuitive understanding of the
extent of the queuing delay. In particular, if traffic intensity is close to zero, then packets are pushed out
at arate much higher than the packet arrival rate; therefore, the average queuing delay will be close to
zero. On the other hand, when the traffic intensity is close to 1, there will be intervals of time when the
arrival rate exceeds the transmission capacity (due to the burstiness of arrivals), and a queue will form.
Asthetraffic intensity approaches 1, the average queue length gets larger and larger. The qualitative
dependence of average queuing delay on the traffic intensity is shown in Figure 1.6-2 below.

One important aspect of Figure 1.6-2 isthe fact that as the traffic intensity approaches 1, the average
gueueing delay increases rapidly. A small percentage increase in the intensity will result in amuch
larger percentage-wise increase in delay. Perhaps you have experienced this phenomenon on the
highway. If you regularly drive on aroad that istypically congested, the fact that the road istypically
congested means that its traffic intensity is closeto 1. If some event causes an even dlightly-larger-than-
usual amount of traffic, the delays you experience can be huge.

average
gqueleing delay
-

Figure 1.6-2: Dependence of average queuing delay on traffic intensity.

Packet L oss
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In our discussions above, we have assumed that the queue is capable of holding an infinite number of
packets. In reality a queue preceding alink has finite capacity, although the queuing capacity greatly
depends on the switch design and cost. Because the queue capacity is afinite, packet delays do not
really approach infinity as the traffic intensity approaches one. Instead, a packet can arrive to find afull
gueue. With no place to store such a packet, arouter will drop that packet; that is, the packet will be
lost. From an end-system viewpoint, thiswill look like a packet having been transmitted into the
network core, but never emerging from the network at the destination. The fraction of lost packets
increases as the traffic intensity increases. Therefore, performance at a node is often measured not only
in terms of delay, but also in terms of the probability of packet loss. Aswe shall discussin the
subsequent chapters, alost packet may be retransmitted on an end-to-end basis, by either the application
or by the transport layer protocol.

End-to-End Delay

Our discussion up to this point has been focused on the nodal delay, i.e., the delay at asinglerouter. Let
us conclude our discussion by briefly considering the delay from source to destination. To get a handle
on this concept, suppose there are Q-1 routers between the source host and the destination host. Let us
also suppose that the network is uncongested (so that queuing delays are negligible), the processing
delay at each router and at the source host is dproc, the transmission rate out of each router and out of
the source host is R bits/sec, and the propagation delay between each pair or routers and between the
source host and the first router is d,q,. The nodal delays accumulate and give an end-to-end delay,

Jendend = Q (dpProc + dygns + dprop) ,
where once again d; 45 = L/R, where L isthe packet size. We |leave it to the reader to generalize this

formulato the case of heterogeneous delays at the nodes and to the presence of an average queuing
delay at each node.

Return to Table Of Contents

References

[Bertsekas 1992] D. Bertsekas and R. Gallager, Data Networks, 2nd Edition, Prentice Hall, Englewood
Cliffs, N.J., 1992

[Daigle 1991] J.N. Daigle, Queuing Theory for Telecommunications, Addision-Wesley, Reading
Massachusetts, 1991.

[Kleinrock 1975] L. Kleinrock, Queuing Systems, Volume 1, John Wiley, New Y ork, 1975.

[Kleinrock 1976] L. Kleinrock, Queuing Systems, Volume 2, John Wiley, New Y ork, 1976.

file:///D|/Downl oads/Livros/computacdio/ Computer%20Net...own%20A pproach%20Featuring%20the%620I nternet/del ay.htm (6 of 7)20/11/2004 15:51:43



Delay and Lossin Packet-Switched Networks

[Ross 1995] K.W. Ross, Multiservice Loss Models for Broadband Telecommunication Networks,
Springer, Berlin, 1995.

Copyright Keith W. Ross and James F. Kurose 1996-2000

file:///ID)/Downl oads/Livros/computagdo/ Computer%20Net...own%20A pproach%20Featuring%20the%20I nternet/delay.htm (7 of 7)20/11/2004 15:51:43



Protocol Layersand Their Service Models

1.7 Protocol Layers and Their Service Models

From our discussion thusfar, it is apparent that the Internet is an extremely complicated system. We have seen that there are
many "pieces’ to the Internet: numerous applications and protocols, various types of end systems and connections between end
systems, routers, and various types of link-level media. Given this enormous complexity, isthere any hope of organizing
network architecture, or at least our discussion of network architecture? Fortunately, the answers to both questionsis "yes."

Before attempting to organize our thoughts on Internet architecture, let's look for a human analogy. Actually, we deal with
complex systems all thetimein our every day life. Imagine if someone asked you to describe, for example, the airline system.
How would you find the structure to describe this complex system that has ticketing agents, baggage checkers, gate personnel,
pilots and airplanes, air traffic control, and aworldwide system for routing airplanes? One way to describe this system might
be to describe the series of actions you take (or others take for you) when you fly on an airline. 'Y ou purchase your ticket,
check your bags, go to the gate and eventually get loaded onto the plane. The plane takes off and is routed to its destination.
After your plane lands, you de-plane at the gate and claim your bags. If the trip was bad, you complain about the flight to the
ticket agent (getting nothing for your effort). This scenario is shown in Figure 1.7-1.

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gate gate
(load people, bags) (unload people, bags)

takeoff landing

airplane routing airplane routing

Figure 1.7-1: Taking an airplane trip: actions

Already, we can see some anal ogies here with computer networking: you are being shipped from source to destination by the
airline; a packet is shipped from source host to destination host in the Internet. But thisis not quite the analogy we are after.
We are looking for some structurein Figure 1.7-1. Looking at Figure 1.7-1, we note that there is aticketing function at each
end; there is also a baggage function for already ticketed passengers, and a gate function for already-ticketed and already-
baggage-checked passengers. For passengers who have made it through the gate (i.e., passengers who are already ticketed,
baggage-checked, and through the gate), there is a takeoff and landing function, and while in flight, there is an airplane routing
function. This suggests that we can look at the functionality in Figure 1.7-1 in a horizontal manner, as shown in Figure 1.7-2.
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ticket (purchase)

ticket (complain)

baggage (check)

baggage (claim)

gate
(load people, bags)

gate
(unload people, bags)

takeoff

landing

airplane routing

airplane routing

ticketing
baggage

gate

takeoft/
landing

airplane
routing

airplane routing

Figure 1.7-2: horizontal "layering” of airline functionality

Figure 1.7-2 has divided the airline functionality into layers, providing aframework in which we can discussairline travel.
Now, when we want to describe a part of airline travel we can talk about a specific, well-defined component of airline travel.
For example, when we discuss gate functionality, we know we are discussing functionality that sits "below" baggage handling,
and "above" takeoff and landing. We note that each layer, combined with the layers below it, implement some functionality,
some service. At theticketing layer and below, airline-counter-to-airline-counter transfer of a person isaccomplished. At the
baggage layer and below, baggage-check-to-baggage-claim transfer of a person and their bags in accomplished. Note that the
baggage layer provides this service only to an already ticketed person. At the gate layer, departure-gate-to-arrival-gate transfer
of aperson and their bags is accomplished. At the takeoff/landing layer, runway-to-runway transfer of a person (actually,
many people) and their bags, is accomplished. Each layer providesits functionality (service) by (i) performing certain actions
within that layer (e.g., at the gate layer, loading and unloading people from an airplane) and by (ii) using the services of the
layer directly below it (e.g., in the gate layer, using the runway-to-runway passenger transfer service of the takeoff/landing

layer).

As noted above, alayered architecture allows us to discuss awell-defined, specific part of alarge and complex system. This
itself is of considerable value. When a system has alayered structure it is also much easier to change the implementation of the
service provided by the layer. Aslong asthe layer provides the same service to the layer above it, and usesthe same services
from the layer below it, the remainder of the system remains unchanged when alayer's implementation is changed. (Note that
changing the implementation of a serviceis very different from changing the serviceitself!) For example, if the gate functions
were changed (e.g., to have people board and disembark by height), the remainder of the airline system would remain
unchanged since the gate layer still provides the same function (loading and unloading people); it smply implements that
function in a different manner after the change. For large and complex systems that are constantly being updated, the ability to
change the implementation of a service without affecting other components of the system is another important advantage of

layering.

But enough with airlines. Let's now turn our attention to network protocols. To reduce design complexity, network designers
organize protocols -- and the network hardware and software that implements the protocols -- in layers. With alayered
protocol architecture, each protocol belongs to one of the layers. It's important to realize that a protocol in layer n isdistributed
among the network entities (including end systems and packet switches) that implement that protocol, just as the functionsin
our layered airline architecture were distributed between the departing and arriving airports. In other words, there's a"piece" of
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layer nin each of the network entities. These "pieces’ communicate with each other by exchanging layer-n messages. These
messages are called layer-n protocol data units, or more commonly n-PDUs. The contents and format of an n-PDU, aswell as
the manner in which the n-PDUs are exchanged among the network elements, are defined by alayer-n protocol. When taken
together, the protocols of the various layers are called the protocol stack.

When layer n of Host A sends an n-PDU to layer n of Host B, layer n of Host A passes the n-PDU to layer n-1 and then lets
layer n-1 deliver the n-PDU to layer n of B; thuslayer nissaid to rely on layer n-1 to deliver its n-PDU to the destination. A
key concept isthat of the service model of alayer. Layer n-1 issaid to offer servicesto layer n. For example, layer n-1 might
guarantee that the n-PDU will arrive without error at layer n in the destination within one second, or it might only guarantee
that the n-PDU will eventually arrive at the destination without any assurances about error.

The concept of protocol layering isafairly abstract and is sometimes difficult to grasp at first. This concept will become clear
aswe study the Internet layers and their constituent protocolsin greater detail. But et use now try to shed some insight on
protocol layering and protocol stacks with an example. Consider a network which organizes its communication protocolsin
four layers. Because there are four layers, there are four types of PDUs:. 1-PDUs, 2-PDUs, 3-PDUs and 4-PDUs. As shown in
Figure 1.7-3, the application, operating at the highest layer, layer 4, creates amessage, M. Any message created at this highest
layer isa4-PDU. The message M itself may consist of many different fields (in much the same way as a structure or record in
a programming language may contain different fields); it is up to the application to define and interpret the fields in the
message. The fields might contain the name of the sender, a code indicating the type of the message, and some additional
data.

Within the source host, the contents of the entire message M is then "passed” down the protocol stack to layer 3. In the
examplein Figure 1.7-3, layer 3 in the source host divides a4-PDU, M, into two parts, M; and M, The layer 3 in the source
host then adds to M; and M, so-called header s, to create two layer 3 PDUs. Headers contain the additional information
needed by the sending and receiving sides of layer 3 to implement the service that layer 3 providesto layer 4. The procedure
continues in the source, adding more header at each layer, until the 1-PDUs are created. The 1-PDUs are sent out of the source
host onto a physical link. At the other end, the destination host receives 1-PDUs and directs them up the protocol stack. At each
layer, the corresponding header is removed. Finally, M is reassembled from M4 and M, and then passed on to the application.

Original
Ifessage
*PDU
[Hd H.M) 2PDU EM, H.[\]
r r
|H:.EI'I3 || ﬂ_IQHj | 1-PDU |H-2H3 || |H'2H3 |

Source Destination

Figure 1.7-3: different PDU's at different layers in the protocol architecture

Note that in Figure 1.7-3, layer n uses the services of layer n-1. For example, once layer 4 creates the message M, it passes the
message down to layer 3 and relies on layer 3 to deliver the message to layer 4 at the destination.

Interesting enough, this notion of relying on lower layer servicesis prevalent in many other forms of communication. For
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example, consider ordinary postal mail. When you write aletter, you include envelope information such as the destination
address and the return address with the letter. The letter along with the address information can be considered a PDU at the
highest layer of the protocol stack. Y ou then drop the PDU in a mailbox. At this point, the letter is out of your hands. The
postal service may then add some of its own internal information onto your letter, essentially adding a header to your letter.
For example, in the United States a barcode is often printed on your letter.

Once you drop your envelope into a mailbox, you rely on the services of the postal service to deliver the letter to the correct
destination in atimely manner. For example, you don't worry about whether a postal truck will break down while carrying the
letter. Instead the postal service takes care of this, presumably with well-defined plans to recover from such failures.
Furthermore, within the postal service itself there are layers, and the protocols at one layer rely on and use the services of the
layer below.

In order for one layer to interoperate with the layer below it, the interfaces between the two layers must be precisely defined.
Standards bodies define precisely the interfaces between adjacent layers (e.g., the format of the PDUs passed between the
layers) and permit the devel opers of networking software and hardware to implement the interior of the layers as they please.
Therefore, if anew and improved implementation of alayer isreleased, the new implementation can replace the old
implementation and, in theory, the layers will continue to interoperate.

In a computer network, each layer may perform one or more of the following generic set of tasks:

. Error control, which makes the logical channel between the layersin two peer network elements more reliable.

. Flow control, which avoids overwhelming a slower peer with PDUSs.

. Segmentation and Reassembly, which at the transmitting side divides large data chunks into smaller pieces; and at the
receiving side reassembles the smaller pieces into the original large chunk.

. Multiplexing, which allows several higher-level sessionsto share asingle lower-level connection.

. Connection setup, which provides the handshaking with a peer.

Protocol layering has conceptual and structural advantages. We mention, however, that some researchers and networking
engineers are vehemently opposed to layering [Wakeman 1992]. One potential drawback of layering is that one layer may
duplicate lower-layer functionality. For example, many protocol stacks provide error recovery on both alink basis and an end-
to-end basis. A second potential drawback is that functionality at one layer may need information (e.g., atimestamp value) that
is present only in another layer; this violates the goal of separation of layers.

1.7.1 The Internet Protocol Stack

The Internet stack consists of five layers. the physical, data link, network, transport and application layers. Rather than use the
cumbersome terminology PDU-n for each of the five layers, we instead give special names to the PDUs in four of the five
layers. frame, datagram, segment, and message. We avoid naming a data unit for the physical layer, as no name is commonly
used at thislayer. The Internet stack and the corresponding PDU names are illustrated in Figure 1.7-4.
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Stack PDUs

SRS Application message
Layer 4 Fransport segment
Layer 3 Network datagram
Layer 2 Link frame
Layer 1 Physical 1-PDU

Figure 1.7-4: The protocol stack, and protocol data units

A protocol layer can be implemented in software, in hardware, or using a combination of the two. Application-layer protocols
--suchasHTTP and SMTP -- are almost always implemented in software in the end systems; so are transport layer protocols.
Because the physical layer and datalink layers are responsible for handling communication over a specific link, they are
typicaly implemented in a network interface card (e.g., Ethernet or ATM interface cards) associated with a given link. The
network layer is often a mixed implementation of hardware and software.

We now summarize the Internet layers and the services they provide:

. Application layer: The application layer is responsible for supporting network applications. The application layer
includes many protocols, including HTTP to support the Web, SMTP to support electronic mail, and FTP to support file
transfer. We shall seein Chapter 2 that it is very easy to create our own new application-layer protocols.

. Transport layer: The transport layer isresponsible for transporting application-layer messages between the client and
server sides of an application. In the Internet there are two transport protocols, TCP and UDP, either of which can
transport application-layer messages. TCP provides a connection-oriented service to its applications. This service
includes guaranteed delivery of application-layer messages to the destination and flow control (i.e., sender/receiver
speed matching). TCP also segments long messages into shorter segments and provides a congestion control
mechanism, so that a source throttles its transmission rate when the network is congested. The UDP protocol provides
its applications a connnectionless service, which (as we saw in section 1.3) isvery much a no-frills service.

. Network layer: The network layer is responsible for routing datagrams from one host to another. The Internet's network
layer has two principle components. First it has a protocol that defines the fields in the 1P datagram as well as how the
end systems and routers act on these fields. This protocol isthe celebrated | P protocol.. Thereis only one I P protocal,
and al Internet components that have a network layer must run the IP protocol. The Internet's network layer also
contains routing protocols that determine the routes that datagrams take between sources and destinations. The Internet
has many routing protocols. Aswe saw in section 1.4, the Internet is network of networks and within a network, the
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network administrator can run any routing protocol desired. Although the network layer contains both the 1P protocol
and numerous routing protocols, it is often simply referred to asthe IP layer, reflecting that fact that 1P isthe glue that
binds the Internet together.

The Internet transport layer protocols (TCP and UDP) in a source host passes a transport layer segment and a destination
addressto the IP layer, just as you give the postal service aletter with a destination address. The IP layer then provides
the service of routing the segment to its destination. When the packet arrives at the destination, I1P passes the segment to
the transport layer within the destination.

. Link layer: The network layer routes a packet through a series of packet switches (i.e., routers) between the source and
destination. To move a packet from one node (host or packet switch) to the next node in the route, the network layer
must rely on the services of the link layer. In particular, at each node | P passes the datagram to the link layer, which
delivers the datagram to the next node along the route. At this next node, the link layer passes the | P datagram to the
network layer. The process is analogous to the postal worker at a mailing center who puts aletter into a plane, which
will deliver the letter to the next postal center along the route. The services provided at the link layer depend on the
specific link-layer protocol that is employed over the link. For example, some protocols provide reliable delivery on a
link basis, i.e., from transmitting node, over one link, to receiving node. Note that thisreliable delivery serviceis
different from the reliable delivery service of TCP, which provides reliable delivery from one end system to another.
Examples of link layers include Ethernet and PPP; in some contexts, ATM and frame relay can be considered link
layers. As datagramstypically need to traverse several links to travel from source to destination, a datagram may be
handled by different link-layer protocols at different links along its route. For example, a datagram may be handled by
Ethernet on one link and then PPP on the next link. P will receive a different service from each of the different link-
layer protocols.

. Physical layer: While the job of the link layer isto move entire frames from one network element to an adjacent
network element, the job of the physical layer isto move the individual bits within the frame from one node to the next.
The protocolsin thislayer are again link dependent, and further depend on the actual transmission medium of thelink (e.
0., twisted-pair copper wire, single mode fiber optics). For example, Ethernet has many physical layer protocols: one for
twisted-pair copper wire, another for coaxial cable, another for fiber, etc. In each case, abit is moved acrossthelink in a
different way.

If you examine the Table Of Contents, you will see that we have roughly organized this book using the layers of the Internet
protocol stack. We take atop-down approach, first covering the application layer and then preceding downwards.

1.7.2 Network Entities and Layers

The most important network entities are end systems and packet switches. Aswe shall discuss later in this book, there are two
two types of packet switches: routers and bridges. We presented an overview of routersin the earlier sections. Bridges will be
discussed in detail in Chapter 5 whereas routers will be covered in more detail in Chapter 4. Similar to end systems, routers and
bridges organize the networking hardware and software into layers. But routers and bridges do not implement all of the layers
in the protocol stack; they typically only implement the bottom layers. As shown in Figure 1.7-5, bridges implement layers 1
and 2; routersimplement layers 1 through 3. This means, for example, that Internet routers are capable of implementing the IP
protocol (alayer 3 protocol), while bridges are not. We will see later that while bridges do not recognize | P addresses, they are
capable of recognizing layer 2 addresses, such as Ethernet addresses. Note that hosts implement al five layers; thisis
consistent with the view that the Internet architecture puts much of its complexity at the "edges' of the network. Repeaters, yet
another kind of network entity to be discussed in Chapter 5, implement only layer 1 functionality.
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Figure 1.7-5: Hosts, routers and bridges - each contain a different set of layers, reflecting their differences in functionality
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1.8 Internet Backbones, NAPs and ISPs

Our discussion of layering in the previous section has perhaps given the impression that the Internet isa
carefully organized and highly intertwined structure. Thisis certainly true in the sense that all of the
network entities (end systems, routers and bridges) use a common set of protocols, enabling the entities
to communicate with each other. If one wanted to change, remove, or add a protocol, one would have to
follow along and arduous procedure to get approval from the IETF, which will (among other things)
make sure that the changes are consistent with the highly intertwined structure. However, from a
topological perspective, to many people the Internet seemsto be growing in a chaotic manner, with new
sections, branches and wings popping up in random places on adaily basis. Indeed, unlike the protocols,
the Internet's topology can grow and evolve without approval from a central authority. Let us now try to
agrip on the seemingly nebulous Internet topology.

Aswe mentioned at the beginning of this chapter, the topology of the Internet isloosely hierarchical.
Roughly speaking, from bottom-to-top the hierarchy consists of end systems (PCs, workstations, etc.)
connected to local Internet Service Providers (ISPs). The local 1SPs are in turn connected to regional

I SPs, which are in turn connected to national and international 1SPs. The national and international |SPs
are connected together at the highest tier in the hierarchy. New tiers and branches can be added just asa
new piece of Lego can be attached to an existing L ego construction.

In this section we describe the topology of the Internet in the United States as of 1999. Let's begin at the
top of the hierarchy and work our way down. Residing at the very top of the hierarchy are the national

| SPs, which are called National Backbone Provider (NBPs). The NBPs form independent backbone
networks that span North America (and typically abroad as well). Just as there are multiple long-distance
telephone companies in the USA, there are multiple NBPs that compete with each other for traffic and
customers. The existing NBPs include internetM CI, SprintLink, PSINet, UUNet Technologies, and

AGIS. The NBPstypicaly have high-bandwidth transmission links, with bandwidths ranging from 1.5

Mbps to 622 Mbps and higher. Each NBP also has numerous hubs which interconnect its links and at
which regional 1 SPs can tap into the NBP.

The NBPs themselves must be interconnected to each other. To see this, suppose one regional 1SP, say
MidWestnet, is connected to the MCIl NBP and another regional 1SP, say EastCoastnet, is connected to
Sprint's NBP. How can traffic be sent from MidWestnet to EastCoastnet? The solution isto introduce
switching centers, called Networ k Access Points (NAPs), which interconnect the NBPs, thereby
allowing each regional 1SP to pass traffic to any other regional 1SP. To keep us all confused, some of the
NAPs are not referred to as NAPs but instead as MAES (Metropolitan Area Exchanges). In the United
States, many of the NAPs are run by RBOCs (Regional Bell Operating Companies); for example,
PacBell hasa NAP in San Francisco and Ameritech hasa NAP in Chicago. For alist of maor NBP's

(those connected into at least three MAPYMAE'S), see [Haynal 99].
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Because the NAPs relay and switch tremendous volumes of Internet traffic, they are typically in
themselves complex high-speed switching networks concentrated in a small geographical area (for
example, asingle building). Often the NAPs use high-speed ATM switching technology in the heart of
the NAP, with IP riding on top of ATM. (We provide a brief introduction to ATM at the end of this
chapter, and discuss IP-over-ATM in Chapter 5) Figure 1.8-1 illustrates PacBell's San Francisco NAP,
The details of Figure 1.8-1 are unimportant for us now; it is worthwhile to note, however, that the NBP
hubs can themselves be complex data networks.
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Figure 1.8-1: The PacBell NAP Architecture (courtesy of the Pacific Bell Web site).

The astute reader may have noticed that ATM technology, which uses virtual circuits, can be found at
certain places within the Internet. But earlier we said that the "Internet is a datagram network and does
not use virtual circuits'. We admit now that this statement stretches the truth allittle bit . We made this
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statement because it helps the reader to see the forest through the trees by not having the main issues
obscured. The truth is that there are virtual circuitsin the Internet, but they are in localized pockets of
the Internet and they are buried deep down in the protocol stack, typically at layer 2. If you find this
confusing, just pretend for now that the Internet does not employ any technology that uses virtual
circuits. Thisis not too far from the truth.

Running an NBP is not cheap. In June 1996, the cost of leasing 45 Mbps fiber optics from coast-to-
coast, as well as the additional hardware required, was approximately $150,000 per month. And the fees
that an NBP pays the NAPs to connect to the NAPs can exceed $300,000 annually. NBPs and NAPs also
have significant capital costs in equipment for high-speed networking. An NBP earns money by
charging a monthly fee to the regional | SPs that connect to it. The fee that an NBP charges to aregional

| SP typically depends on the bandwidth of the connection between the regional ISP and the NBP; clearly
a 1.5 Mbps connection would be charged less than a 45 Mbps connection. Once the fixed-bandwidth
connection isin place, the regional ISP can pump and receive as much dataas it pleases, up to the
bandwidth of the connection, at no additional cost. If an NBP has significant revenues from the regional

| SPs that connect to it, it may be able to cover the high capital and monthly costs of setting up and
maintaining an NBP.

A regional ISP isaso acomplex network, consisting of routersand transmission links with rates
ranging from 64 Kbps upward. A regional ISP typically tapsinto an NBP (at an NBP hub), but it can
also tap directly into an NAP, in which case the regional NBP pays a monthly fee to a NAP instead of to
aNBP. A regional ISP can also tap into the Internet backbone at two or more distinct points (for
example, at an NBP hub or at a NAP). How does aregional | SP cover its costs? To answer this question,
let's jump to the bottom of the hierarchy.

End systems gain access to the Internet by connecting to alocal 1SP. Universities and corporations can
act aslocal 1SPs, but backbone service providers can also serve asalocal ISP. Many local ISPs are
small "mom and pop" companies, however. A popular WWW site known simple as"The List" contains
link to nearly 8000 local, regional, and backbone ISPs [List 1999]. The local 1SPstap into one of the
regional ISPsin its region. Analogous to the fee structure between the regional ISP and the NBP, the
local | SP pays a monthly feeto its regional 1SP which depends on the bandwidth of the connection.
Finally, the local ISP chargesits customers (typically) aflat, monthly fee for Internet access: the higher
the transmission rate of the connection, the higher the monthly fee.

We conclude this section by mentioning that anyone of us can become alocal | SP as soon as we have an
Internet connection. All we need to do is purchase the necessary equipment (for example, router and
modem pool) that is needed to allow other users to connect to our so-called "point of presence." Thus,
new tiers and branches can be added to the Internet topology just as a new piece of Lego can be attached
to an existing L ego construction.

Return to Table Of Contents
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A brief history of computer networking and the Internet

Sections 1.1-1.8 presented an overview of technology of computer networking and the Internet. Y ou
should know enough now to impress your family and friends. However, if you really want to be a big hit
at the next cocktail party, you should sprinkle your discourse with tidbits about the fascinating history of
the Internet.

1961-1972: Development and Demonstration of Early Packet Switching Principles

Thefield of computer networking and today's Internet trace their beginnings back to the early 1960s, a
time at which the telephone network was the world's dominant communication network. Recall from
section 1.3, that the telephone network uses circuit switching to transmit information from a sender to
receiver -- an appropriate choice given that voice is transmitted at a constant rate between sender and
receiver. Given the increasing importance (and great expense) of computersin the early 1960's and the
advent of timeshared computers, it was perhaps natural (at least with perfect hindsight!) to consider the
guestion of how to hook computers together so that they could be shared among geographically
distributed users. The traffic generated by such users was likely to be "bursty" -- intervals of activity, e.
g., the sending of a command to a remote computer, followed by periods of inactivity, while waiting for
areply or while contemplating the received response.

Three research groups around the world, all unaware of the others work [Leiner 98], began inventing the
notion of packet switching as an efficient and robust alternative to circuit switching. The first published
work on packet-switching techniques was the work by Leonard Kleinrock [Kleinrock 1961, Kleinrock
1964], at that time a graduate student at MIT. Using queuing theory, Kleinrock's work elegantly
demonstrated the effectiveness of the packet-switching approach for bursty traffic sources. At the same
time, Paul Baran at the Rand Institute had begun investigating the use of packet switching for secure
voice over military networks [Baran 1964], while at the National Physical Laboratory in England,

Donald Davies and Roger Scantlebury were also developing their ideas on packet switching.

Thework at MIT, Rand, and NPL laid the foundations for today's Internet. But the Internet also has a
long history of a"Let's build it and demonstrate it" attitude that also dates back to the early 1960's. J.C.
R. Licklider [DEC 1990] and Lawrence Roberts, both colleagues of Kleinrock's at MIT, both went on to
lead the computer science program at the Advanced Projects Research Agency (ARPA) in the United
States. Roberts [Roberts 67] published an overall plan for the so-called ARPAnNet [Roberts 1967], the
first packet-switched computer network and a direct ancestor of today's public Internet. The early
packet switches were known as Interface Message Processors (IMP's) and the contract to build these
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switches was awarded to BBN. On Labor Day in 1969, the first IMP wasinstalled at UCLA, with three
additional IMP being installed shortly thereafter at the Stanford Research Institute, UC Santa Barbara,
and the University of Utah. The fledgling precursor to the Internet was four nodes large by the end of
1969. Kleinrock recallsthe very first use of the network to perform aremote login from UCLA to SRI
crashing the system [Kleinrock 1998].

o A DAL L SRR -
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Figure 1.9-1: Thefirst Internet Message Processor (IMP), with L. Kleinrock

By 1972, ARPAnet had grown to approximately 15 nodes, and was given its first public demonstration
by Robert Kahn at the 1972 International Conference on Computer Communications. The first host-to-
host protocol between ARPANet end systems known as the Network Control Protocol (NCP) was

completed [RFC 001]. With an end-to-end protocol available, applications could now be written. The

first email program was written by Ray Tomlinson at BBN in 1972.

1972 - 1980: Internetworking, and New and Proprietary Networks

Theinitial ARPAnet was asingle, closed network. In order to communicate with an ARPAnet host, one
had to actually be attached to another ARPANnet IMP. Inthe early to mid 1970's, additional packet-
switching networks besides ARPAnNet came into being; ALOHAnNet, a satellite network linking together
universities on the Hawaiian islands [Abramson 1972]; Telenet, aBBN commercial packet-switching
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network based on ARPAet technology; Tymnet; and Transpac, a French packet-switching network.
The number of networks was beginning to grow. In 1973, Robert Metcalfe's PhD thesis laid out the
principle of Ethernet, which would later lead to a huge growth in so-called Local Area Networks (LANS)
that operated over a small distance based on the Ethernet protocol.

Once again, with perfect hindsight one might now see that the time was ripe for developing an
encompassing architecture for connecting networks together. Pioneering work on interconnecting
networks (once again under the sponsorship of DARPA), in essence creating a network of networks, was
done by Vinton Cerf and Robert Kahn [Cerf 1974]; the term "internetting” was coined to describe this

work. The architectural principlesthat Kahn' articulated for creating a so-called "open network
architecture" are the foundation on which today's Internet is built [Leiner 98]:

. minimalism, autonomy: a network should be able to operate on its own, with no internal
changes required for it to be internetworked with other networks;

. best effort service: internetworked networks would provide best effort, end-to-end service. If
reliable communication was required, this could accomplished by retransmitting lost messages
from the sending host;

. statelessrouters: the routersin the internetworked networks would not maintain any per-flow
state about any ongoing connection

. decentralized control: there would be no global control over the internetworked networks.

These principles continue to serve as the architectural foundation for today's Internet, even 25 years later
- atestament to insight of the early Internet designers.

These architectural principles were embodied in the TCP protocol. The early versions of TCP, however,
were quite different from today's TCP. The early versions of TCP combined areliable in-sequence
delivery of dataviaend system retransmission (still part of today's TCP) with forwarding functions
(which today are performed by IP). Early experimentation with TCP, combined with the recognition of
the importance of an unreliable, non-flow-controlled end-end transport service for application such as
packetized voice, led to the separation of |P out of TCP and the development of the UDP protocol. The
three key Internet protocols that we see today -- TCP, UDP and IP -- were conceptually in place by the
end of the 1970's.

In addition to the DARPA Internet-related research, many other important networking activities were
underway. In Hawaii, Norman Abramson was developing ALOHANet, a packet-based radio network
that allowed multiple remote sites on the Hawaiian islands to communicate with each other. The
ALOHA protocol [Abramson 1970] was the first so-called multiple access protocol, allowing
geographically distributed users to share a single broadcast communication medium (aradio frequency).
Abramson's work on multiple access protocols was built upon by Robert Metcalfe in the development of
the Ethernet protocol [Metcalfe 1976] for wire-based shared broadcast networks. Interestingly,

Metcalfe's Ethernet protocol was motivated by the need to connect multiple PCs, printers, and shared
disks together [Perkins 1994]. Twenty-five years ago, well before the PC revolution and the explosion
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of networks, Metcalfe and his colleagues were laying the foundation for today's PC LANs. Ethernet
technology represented an important step for internetworking as well. Each Ethernet local area network
was itself a network, and as the number of LANSs proliferated, the need to internetwork these LANs
together became all the more important. An excellent source for information on Ethernet is Spurgeon's
Ethernet Web Site, which includes Metcalfe's drawing of his Ethernet concept, as shown below in Figure

1.9-2. Wediscuss Ethernet, Aloha, and other LAN technologiesin detail in Chapter 5;

STRTRN

TRANSENE |

Figure 1.9-2: A 1976 drawing by R. Metcalfe of the Ethernet concept (from Charles Spurgeon's
Ethernet Web Site)

In addition to the DARPA internetworking efforts and the Aloha/Ethernet multiple access networks, a
number of companies were developing their own proprietary network architectures. Digital Equipment
Corporation (Digital) released the first version of the DECnet in 1975, allowing two PDP-11
minicomputers to communicate with each other. DECnet has continued to evolve since then, with
significant portions of the OSI protocol suite being based on ideas pioneered in DECnet. Other
important players during the 1970's were Xerox (with the XNS architecture) and IBM (with the SNA
architecture). Each of these early networking efforts would contribute to the knowledge base that would
drive networking in the 80's and 90's.

It is aso worth noting here that in the 1980's (and even before), researchers (see, e.g., [Fraser 1983,
Turner 1986, Fraser 1993]) were also developing a "competitor” technology to the Internet architecture.

These efforts have contributed to the development of the ATM (Asynchronous Transfer Mode)
architecture, a connection-oriented approach based on the use of fixed size packets, known as cells. We
will examine portions of the ATM architecture throughout this book.

1980 - 1990: A Proliferation of Networks
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By the end of the 1970's approximately 200 hosts were connected to the ARPAnNet. By the end of the
1980's the number of host connected to the public Internet, a confederation of networks |ooking much
like today's Internet would reach 100,000. The 1980's would be atime of tremendous growth.

Much of the growth in the early 1980's resulted from several distinct effortsto create computer networks
linking universitiestogether. BlTnet (Because It's There NETwork) provided email and file transfers
among several universitiesin the Northeast. CSNET (Computer Science NETwork) was formed to link
together university researchers without access to ARPAnNet. 1n 1986, NSFNET was created to provide
access to NSF-sponsored supercomputing centers. Starting with an initial backbone speed of 56K bps,
NSFNET's backbone would be running at 1.5 Mbps by the end of the decade, and would be serving as a
primary backbone linking together regional networks.

In the ARPAnet community, many of the final pieces of today's Internet architecture were faling into
place. January 1, 1983 saw the official deployment of TCP/IP as the new standard host protocol for
Arpanet (replacing the NCP protocol). The transition [Postel 1981] from NCP to TCP/IP was a "flag

day" type event -- al host were required to transfer over to TCP/IP as of that day. Inthelate 1980's,
important extensions were made to TCP to implement host-based congestion control [Jacobson 1988].
The Domain Name System, used to map between a human-readable Internet name (e.g., gaia.cs.umass.
edu) and its 32-bit IP address, was also developed [M ockapetris 1983, M ockapetris 1987].

Paralleling this development of the ARPANet (which was for the most part a US effort), in the early
1980s the French launched the Minitel project, an ambitious plan to bring data networking into
everyone's home. Sponsored by the French government, the Minitel system consisted of a public packet-
switched network (based on the X.25 protocol suite, which uses virtua circuits), Minitel servers, and
Inexpensive terminals with built-in low speed modems. The Minitel became a huge successin 1984
when the French government gave away afree Minitel terminal to each French household that wanted
one. Minitel sitesincluded free sites -- such as atelephone directory site -- aswell as private sites, which
collected a usage-based fee from each user. At its peak in the mid 1990s, it offered more than 20,000
different services, ranging from home banking to specialized research databases. It was used by over
20% of France's population, generated more than $1 billion each year, and created 10,000 jobs. The
Minitel wasin alarge fraction of French homes ten years before most Americans had ever heard of the
Internet. It still enjoys widespread use in France, but isincreasingly facing stiff competition from the

I nternet.

The 1990s: Commercialization and the Web

The 1990's were issued in with two events that symbolized the continued evolution and the soon-to-
arrive commercialization of the Internet. First, ARPANet, the progenitor of the Internet ceased to exist.
MILNET and the Defense Data Network had grown in the 1980's to carry most of the US Department of
Defense related traffic and NSFNET had begun to serve as a backbone network connecting regional
networks in the United States and national networks overseas. Also, in 1990, The World (www.world.

std.com) became the first public dialup Internet Service Provider (ISP). In 1991, NSFNET lifted its
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restrictions on use of NSFNET for commercial purposes. NSFNET itself would be decommissioned in
1995, with Internet backbone traffic being carried by commercial Internet Service Providers.

The main event of the 1990's however, was to be the release of the World Wide Web, which brought the

Internet into the homes and businesses of millions and millions of people, worldwide. The Web aso
served as a platform for enabling and deploying hundreds of new applications, including on-line stock
trading and banking, streamed multimedia services, and information retrieval services. For a brief
history of the early days of the WWW, see [W3C 1995].

The WWW was invented at CERN by Tim Berners-Leein 1989-1991 [Berners-Lee 1989], based on
ideas originating in earlier work on hypertext from the 1940's by Bush [Bush 1945] and since the 1960's
by Ted Nelson [Ziff-Davis 1998]. Berners-Lee and his associates developed initial versionsof HTML,
HTTP, aWeb server and a browser -- the four key components of the WWW. The origina CERN
browsers only provided aline-mode interface. Around the end of 1992 there were about 200 Web
serversin operation, this collection of servers being thetip of the iceberg for what was about to come. At
about this time several researchers were developing Web browsers with GUI interfaces, including Marc
Andreesen, who developed the popular GUI browser Mosaic for X. He released an alpha version of his
browser in 1993, and in 1994 formed Mosaic Communications, which later became Netscape
Communications Corporation. By 1995 university students were using Mosaic and Netscape browsersto
surf the Web on adaily basis. At about this time the US government began to transfer the control of the
Internet backbone to private carriers. Companies -- big and small -- began to operate Web servers and
transact commerce over the Web. In 1996 Microsoft got into the Web businessin abig way, and in the
late 1990s it was sued for making its browser a central component of its operating system. In 1999 there
were over two-million Web serversin operation. And all of this happened in less than ten years!

During the 1990's, networking research and development also made significant advances in the areas of
high-speed routers and routing (see, e.g., Chapter 4) and local area networks (see, e.g., Chapter 5). The
technical community struggled with the problems of defining and implementing an Internet service
model for traffic requiring real-time constraints, such as continuous media applications (see, e.g.,
Chapter 6). The need to secure and manage Internet infrastructure (see. e.g., Chapter 7 and 8) also
became of paramount importance as e-commerce applications proliferated and the Internet became a
central component of the world's telecommunications infrastructure.
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1.10 Asynchronous Transfer Mode (ATM)
Networks

Thus far, our focus has been on the Internet and its protocols. But many other existing packet-switching
technologies can also provide end-to-end networking solutions. Among these alternatives to the Internet,
so called Asynchronous Transfer Mode (ATM) networ ks are perhaps the most well-known. ATM
arrived on the scene in the early 1990s. It isuseful to discuss ATM for two reasons. First, it provides an
interesting contrast to the Internet, and by exploring its differences, we will gain more insight into the
Internet. Second, ATM is often used as alink-layer technology in the backbone of the Internet. Since we
will refer to ATM throughout this book, we end this chapter with abrief overview of ATM.

The Original Goals of ATM

The standards for ATM were first developed in the mid 1980s. For those too young to remember, at this
time there were predominately two types of networks: telephone networks, that were (and still are)
primarily used to carry real-time voice; and data networks, that were primarily used to transfer text files,
support remote login, and provide email. There were also dedicated private networks available for video
conferencing. The Internet existed at thistime, but few people were thinking about using it to transport
phone calls, and the WWW was as yet unheard of. It was therefore natural to design a networking
technology that would be appropriate for transporting real-time audio and video as well as text, email
and imagefiles,

ATM achieved this goal. Two standards bodies, the ATM Forum [ATM Forum| and the International
Telecommunications Union [ITU] have developed ATM standards for Broadband Integrated Services

Digital Networks (BISDNSs). The ATM standards call for packet switching with virtual circuits (called
virtual channelsin ATM jargon); the standards define how applications directly interface with ATM, so
that ATM provides complete networking solution for distributed applications. Paralleling the
development of the ATM standards, major companies throughout the world made significant
investmentsin ATM research and development. These investments have led to amyriad of high-
performing ATM technologies, including ATM switches that can switch terabits per second. In recent
years, ATM technology has been deployed very aggressively within both telephone networks and the
Internet backbones.

Although ATM has been deployed within networks, it has been unsuccessful in extending itself al the
way to desktop PCs and workstations. And it is now questionable whether ATM will ever have a
significant presence at the desktop. Indeed, while ATM was brewing in the standards committees and
research labsin the late 1980s and early 1990s, the Internet and its TCP/IP protocols were already
operational and making significant headway:
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. The TCP/IP protocol suite was integrated into all of the most popular operating systems.

. Companies began to transact commerce (e-commerce) over the Internet.

. Residential Internet access became very cheap.

. Many wonderful desktop applications were developed for TCP/IP networks, including the World
Wide Web, Internet phone, and interactive streaming video. Thousands of companies are
currently developing new applications and services for the Internet.

Furthermore, throughout the 1990s, several low-cost high-speed LAN technol ogies were devel oped,
including 100 Mbps Ethernet and more recently Gigabit Ethernet, mitigating the need for ATM usein
high-speed LAN applications. Today, we live in aworld where amost all networking application
products interface directly with TCP/IP. Nevertheless, ATM switches can switch packets at very high
rates, and consequently has been deployed in Internet backbone networks, where the need to transport
traffic at high ratesis most acute. We will discuss the topic of P over ATM in Section 5.8.

Principle Characteristics of ATM

We shall discuss ATM in some detail in subsequent chapters. For now we briefly outline its principle
characteristics:

. The ATM standard defines afull suite of communication protocols, from the transport layer all
the way down through the physical layer.

. It uses packet switching with fixed length packets of 53 bytes. In ATM jargon these packets are
called cells. Each cell has 5 bytes of header and 48 bytes of "payload”. The fixed length cells and
simple headers have facilitated high-speed switching.

« ATM usesvirtua circuits (VCs). In ATM jargon, virtual circuits are called virtual channels. The
ATM header includes afield for the virtual channel number, which is called the virtual channel
identifier (VCI) in ATM jargon. As discussed in Section 1.3, packet switches use the VCI to
route cells towards their destinations; ATM switches also perform V CI tranglation.

« ATM provides no retransmissions on alink-by-link basis. If a switch detects an error inan ATM
cell, it attempts to correct the error using error correcting codes. If it cannot correct the error, it
drops the cell and does not ask the preceding switch to retransmit the cell.

« ATM provides congestion control on an end-to-end basis. That is, the transmission of ATM cells
isnot directly regulated by the switches in times of congestion. However, the network switches
themselves do provide feedback to a sending end system to help it regulate its transmission rate
when the network becomes congested.

. ATM canrun over just about any physical layer. It often runs over fiber optics using the SONET

standard at speeds of 155.52 Mbps, 622 Mbps and higher.

Overview of the ATM Layers

Asshown in Figure 1.10-1, the ATM protocol stack consists of three layers. the ATM adaptation layer
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(AAL), the ATM Layer, and the ATM Physical Layer:

ATM Adaptation Layer (AAL)
ATM Layer
ATM Physical Layer
Figure 1.10-1: Thethree ATM layers.

The ATM Physical Layer deals with voltages, bit timings, and framing on the physical medium. The
ATM Layer isthe core of the ATM standard. It defines the structure of the ATM cell. The ATM
Adaptation Layer isanaogous to the transport layer in the Internet protocol stack. ATM includes many
different types of AALSsto support many different types of services.

Currently, ATM is often used as a link-layer technology within localized regions of the Internet. A
special AAL type, AALS, has been developed to allow TCP/IP to interface with ATM. At the IP-to-
ATM interface, AALS prepares | P datagrams for ATM transport; at the ATM-to-IP interface, AALS
reassembles ATM cellsinto I P datagrams. Figure 1.10-2 shows the protocol stack for the regions of the
Internet that use ATM.

Application Layer (HTTP, FTP, etc.)
Transport Layer (TCP or UDP)
Network Layer (IP)
AALS
ATM Layer
ATM Physica Layer
Figure 1.10-2: Internet-over-ATM protocol stack.

Note that in this configuration, the three ATM layers have been squeezed into the lower two layers of
the Internet protocol stack. In particular, the Internet's network layer "sees' ATM as alink-layer
protocol.

This concludes our brief introduction to ATM. We will return to ATM from time to time throughout this
book.

References

[ATM Forum] The ATM Forum Web site, http://www.atmforum.com
[ITU] Thel TU Web site, http://www.itu.ch
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Chapter 1 summary

1.11 Summary

In this chapter we've covered a tremendous amount of material! We've looked at the various pieces of
hardware and software that make up the Internet in particular, and computer networksin general. We
started at the "edge" of the network, looking at end systems and applications, and at the transport service
provided to the applications running on the end systems. Using network-based distributed applications
as examples, we introduced the notion of a protocol - a key concept in networking. We then dove
deeper inside the network, into the network core, identifying packet-switching and circuit switching as
the two basic approaches for transporting data through a telecommunication network, and examining the
strengths and weaknesses of each approach. We then looked at the lowest (from an architectural
standpoint) parts of the network -- the link layer technologies and physical mediatypically found in the
access network.

In the second part of this introductory chapter we then took the broader view on networking. From a
performance standpoint, we identified the causes of packet delay and packet lossin the Internet. We
identified key architectural principles (layering, service models) in networking. We then examined the
structure of today's Internet. We finished our introduction to networking with a brief history of
computer networking. The first chapter in itself constitutes a mini-course in computer networking.

So, we have indeed covered a tremendous amount of ground in thisfirst chapter! If you're abit
overwhelmed, don't worry. In the following chapters we will revisit all of these ideas, covering them in
much more detail (that's a promise, not athreat!). At this point, we hope you leave this chapter with a
still-devel oping intuition for the pieces that make up a network, a still-developing command for the
vocabulary of networking (don't be shy to refer back to this chapter), and an ever-growing desire to learn
more about networking. That's the task ahead of usfor the rest of this book.

Roadmapping This Book

Before starting any trip, we should always glance at aroadmap in order to become familiar with the
major roads and junctures that lie between us and our ultimate destination. For the trip we are about to
embark on, the ultimate destination is a deep understanding of the how, what and why of computer
networks. Our roadmap is the sequence of chapters of this book:

Computer Networks and the Internet
Application Layer

Transport Layer

Network Layer and Routing

Link Layer and Local Area Networks
Multimedia Networking

Security in Computer Networks

Noak~wdRE
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8. Network Management

Taking alook at this roadmap, we identify Chapters 2 through 5 as the four core chapters of this book.

Y ou should notice that there is one chapter for each of the top four layers of the Internet protocol stack.
Further note that our journey will begin at the top of the Internet protocol stack, namely, the application
layer, and will work its way downward. The rationale behind this top-down journey is that once we
understand the applications, we can then understand the network services needed to support these
applications. We can then, in turn, examine the various ways in which such services might be
implemented by a network architecture. Covering applications early thus provides motivation for the
remainder of the text.

The second half of the book -- Chapters 6 through 8 -- zoom in on three enormously important (and
somewhat independent) topics in modern computer networking. In Chapter 6 (Multimedia Networking),
we examine audio and video applications -- such as Internet phone, video conferencing, and streaming
of stored media. We also look at how a packet-switched network can be designed to provide consistent
quality of service to audio and video applications. In Chapter 7 (Security in Computer Networks), we
first look at the underpinnings of encryption and network security, and then examine how the basic
theory is being applied in broad range of Internet contexts, including electronic mail and Internet
commerce. The last chapter (Network Management) examines the key issues in network management as
well as the Internet protocols that address these issues.

Return to Table of Contents

Copyright Keith W. Ross and Jim Kurose 1996-2000

file://ID)/Downl oads/Livros/computacdo/ Computer%20Net...%20A pproach%20Featuring%20the%620! nternet/summary1.htm (2 of 2)20/11/2004 15:51:48



Chapter 1 Homework and Discussion Questions

Homework Problems and Discussion Questions

Chapter 1

Review Questions
Sections 1.1-1.4

1) What are the two types of servicesthat the Internet provides to its applications? What are some of
characteristics of each of these services?

2) It has been said that flow control and congestion control are equivalent. Isthistrue for the Internet's
connection-oriented service? Are the objectives of flow control and congestion control the same?

3) Briefly describe how the Internet's connection-oriented service provides reliable transport.
4) What advantage does a circuit-switched network have over a packet-switched network?
4) What advantages does TDM have over FDM in a circuit-switched network?

5) Suppose that between a sending host and a receiving host there is exactly one packet switch. The
transmission rates between the sending host and the switch and between the switch and the receiving
host are R; and Ry, respectively. Assuming that the router uses store-and-forward packet switching, what

is the total end-to-end delay to send a packet of length L. (Ignore queuing and propagation delay.)

6) What are some of the networking technologies that use virtual circuits? Find good URL s that discuss
and explain these technologies.

7) What is meant by connection state information in a virtual-circuit network?

8) Suppose you are developing a standard for a new type of network. Y ou need to decide whether your
network will use VCs or datagram routing. What are the pros and cons for using VCs?

Sections 1.5-1.7

9) Is HFC bandwidth dedicated or shared among users? Are collisions possible in a downstream HFC
channel? Why or why not?
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10) What are the transmission rate of Ethernet LANS? For a given transmission rate, can each user on
the LAN continuoudly transmit at that rate?

11) What are some of the physical mediathat Ethernet can run over?

12) Dail-up modems, ISDN, HFC and ADSL are all used for residential access. For each of these access
technologies, provide arange of transmission rates and comment on whether the bandwidth is shared or
dedi cated.

13) Consider sending a series of packets from a sending host to areceiving host over afixed route. List
the delay components in the end-to-end delay for a single packet. Which of these delays are constant and
which are fixed?

14) Review the car-caravan analogy in Section 1.6. Again assume a propagation speed of 100km/hour.

a) Suppose the caravan travels 200 km, beginning in front of one toll booth, passing through a
second toll booth, and finishing just before athird toll booth. What is the end-to-end delay?

b) Repeat (a), now assuming that there are 7 carsin the caravan instead of 10.

15) List five tasks that alayer can perform. It is possible that one (or more) of these tasks could be
performed by two (or more) layers?

16) What are the five layersin the Internet protocol stack? What are the principle responsibilities for
each of these layers?

17) Which layersin the Internet protocol stack does a router process?

Problems

1) Design and describe an application-level protocol to be used between an Automatic Teller Machine,
and a bank's centralized computer. Y our protocol should allow a user's card and password to be verified,
the account balance (which is maintained at the centralized computer) to be queried, and an account
withdrawal (i.e., when money is given to the user) to be made. Y our protocol entities should be able to
handle the all-too-common case in which there is not enough money in the account to cover the
withdrawal. Specify your protocol by listing the messages exchanged, and the action taken by the
Automatic Teller Machine or the bank's centralized computer on transmission and receipt of messages.
Sketch the operation of your protocol for the case of a simple withdrawl with no errors, using a diagram
similar to that in Figure 1.2-1. Explicity state the assumptions made by your protocol about the
underlying end-to-end transport service.
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2) Consider an application which transmits data at a steady rate (e.g., the sender generatesa N bit unit of
data every k time units, where k is small and fixed). Also, when such an application starts, it will stay on
for relatively long period of time. Answer the following questions, briefly justifying your answer:

. Would a packet-switched network or a circuit-switched network be more appropriate for this
application? Why?

« Suppose that a packet-switching network is used and the only traffic in this network comes from
such applications as described  above. Furthermore, assume that the sum of the application data
ratesis less that the capacities of each and every link. Is some form of congestion control
needed? Why?

3) Consider sending afileof F = M *L bits over apath of Q links. Each link transmits at R bps. The
network islightly loaded so that there are no queueing delays. When aform of packet switching is used,
the M * L bits are broken up into M packets, each packet with L bits. Propagation delay is negligible.

a) Suppose the network is a packet-switched virtual-circuit network. Denote the VC set-up time
by tg seconds. Suppose to each packet the sending layers add atotal of hbits of header. How long

doesit take to send the file from source to destination?

b) Suppose the network is a packet-switched datagram network, and a connectionless serviceis
used. Now suppose each packet has 2h bits of header. How long does it take to send the file?

) Repeat (b), but assume message switching is used (i.e., 2hbits are added to the message, and
the message is not segmented).

d) Finally, suppose that the network is a circuit switched network. Further suppose that the
transmission rate of the circuit between source and destination is Rbps. Assuming tgset-up time

and hbits of header appended to the entire file, how long does it take to send the file?

4) Experiment with the message-switching Java applet in this chapter. Do the delays in the applet
correspond to the delays in the previous question? How do link propagation delays effect the the overall
end-to-end delay for packet switching and for message switching?

5) Consider sending alarge file of F bitsfrom Host A to Host B.There are two links (and one switch)
between A and B, and the links are uncongested (i.e., no queueing delays). Host A segments thefileinto
segments of Shits each and adds 40 bits of header to each segment, forming packets of L = 40 + Shits.
Each link has atransmission rate of R bps. Find the value of Sthat minimizes the delay of moving the
packet from Host A to Host B. Neglect propagation delay.

6) This elementary problem begins to explore propagation delay and transmission delay, two central
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concepts in data networking. Consider two hosts, Hosts A and B, connected by asingle link of rate R
bps. Suppose that the two hosts are separted by m meters, and suppose the propagation speed along the
link is s meters/sec. Host A isto send a packet of size L bitsto Host B.

a) Express the propagation delay, dyqp in terms of mand s.

b) Determine the transmission time of the packet, d;5ns 1N terms of Land R.

c) Ignoring processing and queing delays, obtain an expression for the end-to-end delay.

d) Suppose Host A begins to transmit the packet at time t=0. At time t=d,, 5,5, Whereis the last
bit of the packet?

€) SUpPOSe dpy i S greater than Ay 4ng - At time t=dy 40, Where isthe first bit of the packet?

f)) Suppose dygpisless than dy 4ng - At time t=dy 40, Whereis the first bit of the packet?

0) Suppose s=2.5* 108, L=100bits and R=28 kbps. Find the distance mso that oropeaual's iy ans:

7) In this problem we consider sending voice from Host A to Host B over a packet-switched network (e.
g., Internet phone). Host A converts on-the-fly analog voice to adigital 64 kbps bit stream. Host A then
groups the bits into 48-byte packets. Thereis one link between host A and B; itstransmission rateis 1
Mbps and its propagation delay is 2 msec. As soon as Host A gathers a packet, it sendsit to Host B. As
soon as Host B receives an entire packet, it coverts the packet's bits to an analog signal. How much time
elapses from when a bit is created (from the original analog signal at A) until a bit is decoded (as part of
the analog signal at B)?

8) Suppose users share a1 Mbps link. Also suppose each user requires 100 Kbps when transmitting, but
each user only transmits 10% of the time. (See the discussion on "Packet Switching versus Circuit
Switching" in Section 1.4.1.)

a) When circuit-switching is used, how many users can be supported?

b) For the remainder of this problem, suppose packet-switching is used. Find the probability that
agiven user istransmitting.

C) Suppose there are 40 users. Find the probability that at any given time, n users are transmitting
simultaneousdly.

d) Find the probability that there are 10 or more users transmitting simultaneously.

9) Consider the queueing delay in arouter buffer (preceding an outbound link). Suppose all packets are
L bits, the transmission rate is R bps and that N packets arrive to the buffer every L/RN seconds. Find the
average gueueing delay of a packet.

10) Consider the queueing delay in arouter buffer. Let | denote traffic intensity, that is, | = La/R.
Suppose that the queueing delay takes the form LR/(1-1) for | < 1. (a) Provide aformulafor the "total
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delay," that is, the queueing delay plus the transmission delay. (b) Plot the transmission delay asa
function of L/R.

11) (a) Generalize the end-to-end delay formulain Section 1.6 for heterogeneous processing rates,
transmission rates, and propagation delays. (b) Repeat (a), but now also suppose that there is an average
queuing delay of dgee a €ach node.

12) Consider an application that transmits data at a steady rate (e.g., the sender generates one packet of
N bits every k time units, where k is small and fixed). Also, when such an application starts, it will stay
on for relatively long period of time.

a) Would a packet-switched network or a circuit-switched network be more appropriate for this
application? Why?

b) Suppose that a packet-switched network is used and the only traffic in this network comes
from such applications as described above. Furthermore, assume that the sum of the application
dataratesisless that the capacities of each and every link. Is some form of congestion control
needed? Why or why not?

13) Perform atraceroute between source and destination on the same continent at three different hours

of the day. Find the average and standard deviation of the delays. Do the same for a source and
destination on different continents.

14) Recall that ATM uses 53 byte packets consisting of 5 header bytes and 48 payload bytes. Fifty-three
bytesis unusually small for fixed-length packets; most networking protocols (IP, Ethernet, frame relay,
etc.) use packetsthat are, on average, significantly larger. One of the drawbacks of a small packet sizeis
that alarge fraction of link bandwidth is consumed by overhead bytes; in the case of ATM, almost ten
percent of the bandwidth is "wasted" by the ATM header. In this problem we investigate why such a
small packet size was chosen. To this end, suppose that the ATM cell consists of P bytes (possible
different from 48) and 5 bytes of header.

a) Consider sending adigitally encoded voice source directly over ATM. Suppose the sourceis
encoded at a constant rate of 64 kbps. Assume each cell is entirely filled before the source sends
the cell into the network. The time required to fill acell isthe packetization delay.Intermsof L,
determine the packetization delay in milliseconds.

b) Packetization delays greater than 20 msecs can cause noticeable and unpleasant echo.
Determine the packetization delay for L= 1,500 bytes (roughly corresponding to a maximum-
size Ethernet packet) and for L = 48 (corresponding to an ATM cell).

c) Calculate the store-and-forward delay at asingle ATM switch for alink rate of R = 155 Mbps
(apopular link speed for ATM) for L = 1500 bytes and L = 48 bytes.
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d) Comment on the advantages of using asmall cell size.

Discussion Questions
1) Write a one-paragraph description for each of three major projects currently under way at the W3C.

2) What is Internet phone? Describe some of the existing products for Internet phone. Find some of the
Web sites of companies that are in the Internet phone business.

3) What is Internet audio-on-demand? Describe some of the existing products for Internet audio-on-
demand. Find some of the Web sites of companies that are in the Internet audio-on-demand business.
Find some Web sites which provide audio-on-demand content.

4) What is Internet video conferencing? Describe some of the existing products for Internet video
conferencing. Find some of the Web sites of companies that are in the Internet video-conferencing
business.

5) Surf the Web to find a company that is offering HFC Internet access. What transmission rate of the
cable modem? Is this rate always guaranteed for each user on the network?

6) Discussion question: Suppose you are developing an application for the Internet.Would you have your
application run over TCP or UDP? Elaborate. (We will explore this question in some detail in
subsequent chapters. For now appeal to your intuition to answer the question.)

7) Discussion question: What are some of the current activities of the The World Wide Web Consortium
(W3C)? What are some of the current activities of the National Laboratory for Applied Network
Research or NLANR?

8) Discussion question: What does the current topological structure of the Internet (i.e., backbone ISPs,
regional |SPs, and local ISPs) have in common with the topological structure of the telephone networks
inthe USA? How is pricing in the Internet the same as or different from pricing in the phone system.
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Network Applications: Terminology and Basic Concepts

2.1 Principles of

Application Layer Protocols

Networ k applications are the raisons d'etre of a computer network. If we couldn't concelve of any useful
applications, there wouldn't be any need to design networking protocols to support them. But over the past
thirty years, many people have devised numerous ingenious and wonderful networking applications.
These applications include the classic text-based applications that became popular in the 1980s, including
remote access to computers, electronic mail, file transfers, newsgroups, and chat. But they aso include
more recently conceived multimedia applications, such as the World Wide Web, Internet telephony,
video conferencing, and audio and video on demand.

Although network applications are diverse and have many interacting components, software is almost
always at their core. Recall from Section 1.2 that for a network application's software is distributed among
two or more end systems (i.e., host computers). For example, with the Web there are two pieces of
software that communicate with each other: the browser software in the user's host (PC, Mac or
workstation), and the Web server software in the Web server. With Telnet, there are again two pieces of
software in two hosts: software in the local host and software in the remote host. With multiparty video
conferencing, there is a software piece in each host that participates in the conference.

In the jargon of operating systems, it is not actually software pieces (i.e., programs) that are
communicating but in truth processes that are communicating. A process can be thought of as a program
that is running within an end system. When communicating processes are running on the same end
system, they communicate with each other using interprocess communication. The rules for interprocess
communication are governed by the end system'’s operating system. But in this book we are not interested
In how processes on the same host communicate, but instead in how processes running on different end
systems (with potentially different operating systems) communicate. Processes on two different end
systems communicate with each other by exchanging messages across the computer network. A sending
process creates and sends messages into the network; areceiving process receives these messages and
possibly responds by sending messages back. Networking applications have application-layer protocols
that define the format and order of the messages exchanged between processes, as well as the actions
taken on the transmission or receipt of a message.

The application layer is a particularly good place to start our study of protocols. It'sfamiliar ground.
We're acquainted with many of the applications that rely on the protocols we will study. It will giveusa
good feel for what protocols are all about, and will introduce us to many of the same issues that we'll see
again when we study transport, network, and data link layer protocols.

2.1.1 Application-Layer Protocols
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It is important to distinguish between network applications and application-layer protocols. An
application-layer protocol is only one piece (albeit, a big piece) of a network application. Let'slook at a
couple of examples. The Web is a network application that allows users to obtain "documents' from Web
servers on demand. The Web application consists of many components, including a standard for
document formats (i.e., HTML), Web browsers (e.g., Netscape Navigator and Internet Explorer), Web
servers (e.g., Apache, Microsoft and Netscape servers), and an application-layer protocol. The Web's
application-layer protocol, HTTP (the HyperText Transfer Protocol [RFC 2068]), defines how messages
are passed between browser and Web server. Thus, HTTP is only one piece (albeit, abig piece) of the
Web application. As another example, consider the Internet electronic mail application. Internet electronic
mail also has many components, including mail servers that house user mailboxes, mail readers that allow
users to read and create messages, a standard for defining the structure of an email message (i.e., MIME)
and application-layer protocols that define how messages are passed between servers, how messages are
passed between servers and mail readers, and how the contents of certain parts of the mail message (e.g., a
mail message header) are to be interpreted. The principal application-layer protocol for electronic mail is
SMTP (Smple Mail Transfer Protocol [RFC 821]). Thus, SMTP is only one piece (abeit, abig piece) of

the email application.

As noted above, an application layer protocol defines how an application's processes, running on different
end systems, pass messages to each other. In particular, an application layer protocol defines:

. thetypes of messages exchanged, e.g., request messages and response messages;

. the syntax of the various message types, i.e., the fields in the message and how the fields are
delineated;

. the semantics of thefields, i.e., the meaning of the information in the fields;

. rulesfor determining when and how a process sends messages and responds to messages.

Some application-layer protocols are specified in RFCs and are therefore in the public domain. For
example, HTTP isavailable asan RFC. If abrowser developer follows the rules of the HTTP RFC, the
browser will be able to retrieve Web pages from any Web server (more precisely, any Web server that has
also followed the rules of the HTTP RFC). Many other application-layer protocols are proprietary and
intentionally not available in the public domain. For example, many of the existing Internet phone
products use proprietary application-layer protocols.

Clients and Servers

A network application protocol typically has two parts or "sides’, aclient side and aserver side. The
client side in one end system communicates with the server side in another end system. For example, a
Web browser implements the client side of HTTP and a Web server implements the server side of HTTP.
In another example, e-mail, the sending mail server implements the client side of SMTP and the receiving
mail server implements the server side of SMTP.

For many applications, a host will implement both the client and server sides of an application. For
example, consider a Telnet session between Hosts A and B. (Recall that Telnet is a popular remote login
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application.) If Host A initiates the Telnet session (so that a user at Host A islogging onto Host B), then
Host A runs the client side of the application and Host B runs the server side. On the other hand, if Host B
initiates the Telnet session, then Host B runs the client side of the application. FTP, used for transferring
files between two hosts, provides another example. When an FTP session exists between two hosts, then
either host can transfer afile to the other host during the session. However, as isthe case for amost all
network applications, the host that initiates the session is labeled the client. Furthermore, a host can
actually act as both a client and a server at the same time for a given application. For example, amail
server host runs the client side of SMTP (for sending mail) as well as the server side of SMTP (for
receiving mail).

Processes Communicating Across a Networ k

As noted above, an application involves two processes in two different hosts communicating with each
other over anetwork. (Actually, a multicast application can involve communication among more than
two hosts. We shall address thisissue in Chapter 4.) The two processes communicate with each other by
sending and receiving messages through their sockets. A process's socket can be thought of as the
process's door: a process sends messages into, and receives message from, the network through its socket.
When a process wants to send a message to another process on another host, it shoves the message out its
door. The process assumes that there is a transportation infrastructure on the other side of the door that
will transport the message to the door of the destination process.

socket : : socket
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I |
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buffers | | | biuffers
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Figure 2.1-1: Application processes, sockets, and the underlying transport protocol.

Figure 2.1-1 illustrates socket communication between two processes that communicate over the Internet.
(The figure assumes that the underlying transport protocol is TCP, although the UDP protocol could be
used aswell in the Internet.) As shown in thisfigure, a socket is the interface between the application
layer and the transport layer within ahost. It is aso referred to asthe API (application programmers
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interface) between the application and the network, since the socket is the programming interface with
which networked applications are built in the Internet.. The application developer has control of
everything on the application-layer side of the socket but haslittle control of the transport-layer side of
the socket. The only control that the application developer has on the transport-layer sideis (i) the choice
of transport protocol and (ii) perhaps the ability to fix afew transport-layer parameters such as maximum
buffer and maximum segment sizes. Once the application developer chooses a transport protocol (if a
choice is available), the application is built using the transport layer the services offered by that protocol.
We will explore sockets in some detail in Sections 2.6 and 2.7.

Addressing Processes

In order for a process on one host to send a message to a process on another host, the sending process
must identify the receiving process. To identify the receiving process, one must typically specify two
pieces of information: (i) the name or address of the host machine, and (ii) an identifier that specifies the
Identity of the receiving process on the destination host.

Let usfirst consider host addresses. In Internet applications, the destination host is specified by its | P
address. We will discuss | P addresses in great detail in Chapter 4. For now, it suffices to know that the IP
addressis a 32-bit quantity that uniquely identifies the end-system (more precisely, it uniquely identifies
the interface that connects that host to the Internet). Since the |P address of any end system connected to
the public Internet must be globally unique, the assignment of 1P addresses must be carefully managed, as
discussed in section 4.4. ATM networks have a different addressing standard. The ITU-T has specified
telephone number-like addresses, called E.164 addresses [I TU 1997], for usein public ATM networks.

E.164 address consist of between seven and 15 digits, with each digit encoded as a byte (yielding an
address of between 56 and 120 bits in length). The assignment of these addressis carefully managed by
country- or region-specific standards bodies; in the United States, the American National Standards
Institute (ANSI) provides this address registration service. We will not cover ATM end-system addressing
in depth in this book; see [Fritz 1997, Cisco 1999] for more details.

In addition to knowing the address of the end system to which a message is destined, a sending
application must also specify information that will allow the receiving end system to direct the message to
the appropriate process on that system. A receive-side port number servesthis purpose in the Internet.
Popular application-layer protocols have been assigned specific port numbers. For example, a Web server
process (which uses the HTTP protocol) isidentified by port number 80. A mail server (using the SMTP)
protocol isidentified by port number 25. A list of well-known port numbers for all Internet standard
protocols can be found in [RTC 1700]. When a devel oper creates a new network application, the

application must be assigned a new port number.

User Agents

Before we begin a more detailed study of application-layer protocals, it is useful to discuss the notion of a
user agent. The user agent is an interface between the user and the network application. For example,
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consider the Web. For this application, the user agent is a browser such as Netscape Navigator or
Microsoft Explorer. The browser allows a user to view Web pages, to navigate in the Web, to provide
input to forms, to interact with Java applets, etc. The browser also implements the client side of the HTTP
protocol. Thus, when activated, the browser is a process that, along with providing an interface to the
user, sends messages into a socket. As an another example, consider the electronic mail application. In
this case, the user agent isa"mail reader” that allows a user to compose and read messages. Many
companies market mail readers (e.g., Eudora, Netscape Messenger) with a graphical user interface that
can run on PCs, Macs and workstations. Mail readers running on PCs also implement the client side of
application layer protocols; typically they implement the client side of SMTP for sending mail and the
client side of amail retrieval protocol, such as POP3 or IMAP (see section 2.4), for receiving mail.

2.1.2 What Services Does an Application Need?

Recall that a socket is the interface between the application process and the transport protocol. The
application at the sending side sends messages through the door. At the other side of the door, the
transport protocol has the responsibility of moving the messages across the network to the door at the
receiving process. Many networks, including the Internet, provide more than one transport protocol.
When you develop an application, you must choose one of the available transport protocols. How do you
make this choice? Most likely, you will study the services that are provided by the available transport
protocols, and you will pick the protocol with the services that best match the needs of your application.
The situation is similar to choosing either train or airplane transport for travel between two cities (say
New York City and Boston). Y ou have to choose one or the other, and each transport mode offers
different services. (For example, the train offers downtown pick up and drop off, whereas the plane offers
shorter transport time.)

What services might a network application need from a transport protocol ? We can broadly classify an
application's service requirements along three dimensions. data loss, bandwidth, and timing.

. Data L oss. Some applications, such as electronic mail, file transfer, remote host access, Web
document transfers, and financial applications require fully reliable data transfer, i.e., no data loss.
In particular, aloss of file data, or datain afinancial transaction, can have devastating
consequences (in the latter case, for either the bank or the customer!). Other loss toler ant
applications, most notably multimedia applications such as real-time audio/video or stored audio/
video, can tolerate some amount of dataloss. In these latter applications, lost data might result in a
small glitch in the played-out audio/video - not acrucial impairment. The effects of such losson
application quality, and actual amount of tolerable packet loss, will depend strongly on the coding
scheme used.

. Bandwidth. Some applications must be able to transmit data at a certain rate in order to be
"effective”. For example, if an Internet telephony application encodes voice at 32 Kbps, then it
must be able to send data into the network, and have data delivered to the receiving application, at
thisrate. If thisamount of bandwidth is not available, the application needs to either encode at a
different rate (and receive enough bandwidth to sustain this different coding rate) or should give up
-- receiving half of the needed bandwidth is of no use to such a bandwidth-sensitive application.
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While many current multimedia applications are bandwidth sensitive, future multimedia
applications may use adaptive coding technique to encode at a rate that matches the currently-
available bandwidth. While bandwidth-sensitive applications require a given amount of
bandwidth, elastic applications can make use of as much or aslittle bandwidth as happens to be
available. Electronic mail, file transfer, remote access, and Web transfers are all elastic
applications. Of course, the more bandwidth, the better. There's an adage that says that one can
not be too rich, too thin, or have too much bandwidth.

. Timing. Thefinal service requirement isthat of timing. Interactive real-time applications, such as
Internet telephony, virtual environments, tel econferencing, and multiplayer games require tight
timing constraints on data delivery in order to be "effective." For example, many of these
applications require that end-to-end delays be on the order of afew hundred of milliseconds or
less. (See Chapter 6 and [Gauthier 1999, Ramjee 94].) Long delaysin Internet telephony, for
example, tend to result in unnatural pauses in the conversation; in amultiplayer game or virtual
interactive environment, along delay between taking an action and seeing the response from the
environment (e.g., from another player on the end of an end-to-end connection) makes the
application feel less"realistic." For non-real-time applications, lower delay is always preferable to
high delay, but no tight constraint is placed on the end-to-end delays.

Figure 2.1-2 summarizes the reliability, bandwidth, and timing requirements of some popular and
emerging Internet applications.

Application DatalLoss |Bandwidth Time sensitive?
file transfer no loss elastic no
electronic mail no loss elastic no
Web documents no loss elastic no
audio: few Kbpsto
real-time audio/video |loss-tolerant 1.M = yes: 100's of msec
video: 10'sKbpsto 5 '
Mbps
stored audio/video  |loss-tolerant | e & Interactive yes: few seconds

audio/video

interactive games loss-tolerant |few Kbpsto 10's Kbps |yes: 100's msecs

financial applications required elastic yes and no

Figure 2.1-2: Requirements of selected network applications.

Figure 2.1-2 outlines only afew of the key requirements of afew of the more popular Internet
applications. Our goal hereis not to provide a complete classification, but simply to identify afew of the
most important axes along which network application requirements can be classified.
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2.1.3 Services Provided by the Internet Transport Protocols

The Internet (and more generally TCP/IP networks) makes available two transport protocols to
applications, namely, UDP (User Datagram Protocol) and TCP (Transmission Control Protocol). When a
developer creates a new application for the Internet, one of the first decisions that the devel oper must
make is whether to use UDP or TCP. Each of these protocols offers a different service model to the
invoking applications.

TCP Services

The TCP service model includes a connection-oriented service and a reliable data transfer service. When
an application invokes TCP for its transport protocol, the application receives both of these services from
TCP.

. Connection-oriented service: TCP has the client and server exchange transport-layer control
information with each other before the application-level messages begin to flow. This so-called
handshaking procedure (that is part of the TCP protocol) alerts the client and server, alowing them
to prepare for an onslaught of packets. After the handshaking phase, a TCP connection is said to
exist between the sockets of the two processes. The connection is a full-duplex connection in that
the two processes can send messages to each other over the connection at the same time. When the
application is finished sending messages, it must tear down the connection. The serviceisreferred
to as a"connection-oriented" service rather than a"connection” service (or a"virtual circuit”
service), because the two processes are connected in avery loose manner. In Chapter 3 we will
discuss connection-oriented service in detail and examine how it isimplemented.

. Reliabletransport service: The communicating processes can rely on TCP to to deliver all
messages sent without error and in the proper order. When one side of the application passes a
stream of bytesinto a socket, it can count on TCP to deliver the same stream of datato the
receiving socket, with no missing or duplicate bytes.

TCP aso includes a congestion control mechanism, a service for the general welfare of the Internet rather
than for the direct benefit of the communicating processes. The TCP congestion control mechanism
throttles a process (client or server) when the network is congested. In particular, aswe shall seein
Chapter 3, TCP congestion control attempts to limit each TCP connection to its fair share of network
bandwidth.

The throttling of the transmission rate can have avery harmful effect on real-time audio and video
applications that have minimum bandwidth requirements. Moreover, real-time applications are loss-
tolerant and do not need afully reliable transport service. In fact, the TCP acknowledgments and
retransmissions that provide the reliable transport service (discussed in Chapter 3) can further slow down
the transmission rate of useful real-time data. For these reasons, devel opers of real-time applications
usually run their applications over UDP rather than TCP.
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Having outlined the services provided by TCP, let us say a few words about the services that TCP does
not provide. First, TCP does not guarantee a minimum transmission rate. In particular, a sending process
IS not permitted to transmit at any rate it pleases; instead the sending rate is regulated by TCP congestion
control, which may force the sender to send at alow average rate. Second, TCP does not provide any
delay guarantees. In particular, when a sending process passes a message into a TCP socket, the message
will eventually arrive to receiving socket, but TCP guarantees absolutely no limit on how long the
message may take to get there. As many of us have experienced with the World Wide Wait, one can
sometimes wait tens of seconds or even minutes for TCP to deliver a message (containing, for example,
an HTML file) from Web server to Web client. In summary, TCP guarantees delivery of all data, but
provides no guarantees on the rate of delivery or on the delays experienced by individual messages.

UDP Services

UDP isano-frills, lightweight transport protocol with a minimalist service model. UDP is connectionless,
so there is no handshaking before the two processes start to communicate. UDP provides an unreliable
datatransfer service, that is, when a process sends a message into a UDP socket, UDP provides no
guarantee that the message will ever reach the receiving socket. Furthermore, messages that do arrive to
the receiving socket may arrive out of order. Returning to our houses/doors analogy for processes/sockets,
UDPislike having along line of taxis waiting for passengers on the other side of the sender's door. When
a passenger (analogous to an application message) exits the house, it hopsin one of the taxis. Some of the
taxis may break down, so they don't ever deliver the passenger to the receiving door; taxis may also take
different routes, so that passengers arrive to the receiving door out of order.

On the other hand, UDP does not include a congestion control mechanism, so a sending process can pump
datainto a UDP socket at any rate it pleases. Although all the data may not make it to the receiving
socket, alarge fraction of the data may arrive. Also, because UDP does not use acknowledgments or
retransmissions that can slow down the delivery of useful real-time data, developers of real-time
applications often choose to run their applications over UDP. Similar to TCP, UDP provides no guarantee
on delay. As many of us know, ataxi can be stuck in atraffic jam for avery long time (while the meter
continues to run!).

Application Application-layer protocol Underlying Transport Protocol
electronic mall SMTP [RFC 821] TCP

remote terminal access |Telnet [RFC 854] TCP

Web HTTP [RFC 2068] TCP

file transfer FTP[RFC 959] TCP

remote file server NFS [McKusik 1996] UDPor TCP
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streaming multimedia |proprietary (e.g., Real Networks) UDP or TCP

Internet telephony proprietary (e.g., Vocaltec) typically UDP

Figure 2.1-3: Popular Internet applications, their application-layer protocols, and their underlying
transport protocols.

Figure 2.1-3 indicates the transport protocols used by some popular Internet applications. We see that
email, remote terminal access, the Web and file transfer all use TCP. These applications have chosen TCP
primarily because TCP provides the reliable data transfer service, guaranteeing that all data will

eventually get to its destination. We also see that Internet telephone typically runs over UDP. Each side of
an Internet phone application needs to send data across the network at some minimum rate (see Figure 2.1-
2); thisis more likely to be possible with UDP than with TCP. Also, Internet phone applications are |oss-
tolerant, so they do not need the reliable data transfer service (and the acknowledgments and
retransmissions that implement the service) provided by TCP.

As noted earlier, neither TCP nor UDP offer timing guarantees. Does this mean that time-sensitive
applications can not run in today's Internet? The answer is clearly no - the Internet has been hosting time-
sensitive applications for many years. These applications often work pretty well because they have been
designed to cope, to the greatest extent possible, with this lack of guarantee. We shall investigate several
of these design tricks in Chapter 6. Nevertheless, clever design has its limitations when delay is excessive,
asis often the case in the public Internet. In summary, today's Internet can often provide satisfactory
service to time-sensitive applications, but it can not provide any timing or bandwidth guarantees. In
Chapter 6, we shall also discuss emerging Internet service models that provide new services, including
guaranteed delay service for time-sensitive applications.

2.1.4 Network Applications Covered in this Book

New public domain and proprietary Internet applications are being developed everyday. Rather than
treating alarge number of Internet applications in an encyclopedic manner, we have chosen to focus on a
small number of important and popular applications. In this chapter we discuss in some detail four
popular applications: the Web, file transfer, electronic mail, and directory service. We first discuss the
Web, not only because the Web is an enormously popular application, but also because its application-
layer protocol, HTTP, isrelatively ssmple and illustrates many key principles of network protocols. We
then discussfile transfer, asit provides anice contrast to HT TP and enables us to highlight some
additional principles. We discuss el ectronic mail, the Internet's first killer application. We shall see that
modern electronic mail makes use of not one, but of several, application-layer protocols. The Web, file
transfer, and electronic mail have common service requirements: they all require areliable transfer
service, none of them have special timing requirements, and they all welcome an elastic bandwidth
offering. The services provided by TCP are largely sufficient for these three applications. The fourth
application, Domain Name System (DNS), provides a directory service for the Internet. Most users do not
interact with DNS directly; instead, users invoke DNS indirectly through other applications (including the
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Web, file transfer, and electronic mail). DNS illustrates nicely how a distributed database can be
Implemented in the Internet. None of the four applications discussed in this chapter are particularly time
sensitive; we will defer our discussion of such time-sensitive applications until Chapter 6.
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The HyperText Transfer Protocol

2.2 The World Wide Web: HTTP

In the 1980s the Internet was used by researchers, academics and university studentsto login to remote hosts, to transfer files from local
hosts to remote hosts and vice versa, to receive and send news, and to receive and send electronic mail. Although these applications were
(and continue to be) extremely useful, the Internet was essentially unknown outside the academic and research communities. Then in early
1990s the Internet's killer application arrived on the scene -- the World Wide Web. The Web is the Internet application that caught the
general public's eye. It isdramatically changing how people interact inside and outside their work environments. It has spawned thousands
of start up companies. It has elevated the Internet from just one of many data networks (including online networks such as Prodigy,
AmericaOn Line and Compuserve, national data networks such as Minitel/Transpac in France, and private X.25 and frame relay
networks) to essentially the one and only data network.

History is sprinkled with the arrival of e ectronic communication technologies that have had major societal impacts. The first such
technology was the telephone, invented in the 1870s. The telephone allowed two persons to orally communicate in real-time without being
in the same physical location. It had a major impact on society -- both good and bad. The next electronic communication technology was
broadcast radio/television, which arrived in the 1920s and 1930s. Broadcast radio/television allowed people to receive vast quantities of
audio and video information. It also had a major impact on society -- both good and bad. The third major communication technology that
has changed the way people live and work is the Web. Perhaps what appeals the most to users about the Web isthat it is on demand. Users
receive what they want, when they want it. Thisis unlike broadcast radio and television, which force users to "tune in" when the content
provider makes the content available. In addition to being on demand, the Web has many other wonderful features that people love and
cherish. It is enormously easy for any individual to make any available available over the Web; everyone can become a publisher at
extremely low cost. Hyperlinks and search engines help us navigate through an ocean of Web sites. Graphics and animated graphics
stimulate our senses. Forms, Java applets, Active X components, as well as many other devices enable us to interact with pages and sites.
And more and more, the Web provides a menu interface to vast quantities of audio and video material stored in the Internet, audio and
video that can be accessed on demand.

2.2.1 Overview of HTTP

The Hypertext Transfer Protocol (HTTP), the Web's application-layer protocol, is at the heart of the Web. HTTP isimplemented in two
programs: a client program and server program. The client program and server programs, executing on different end systems, talk to each
other by exchanging HT TP messages. HT TP defines the structure of these messages and how the client and server exchange the
messages. Before explaining HTTP in detall, it is useful to review some Web terminology.

A Web page (also called adocument) consists of objects. An object isasimply file -- such asaHTML file, aJPEG image, a GIF image,
aJavaapplet, an audio clip, etc. -- that is addressable by asingle URL. Most Web pages consist of abase HTML file and severd
referenced objects. For example, if a Web page contains HTML text and five JPEG images, then the Web page has six objects: the base
HTML file plus the five images. The base HTML file references the other objectsin the page with the objects URLs. Each URL has two
components. the host name of the server that houses the object and the object's path name. For example, the URL

www. soneSchool . edu/ someDepart nment/ pi cture. gif

hasww. somreSchool . edu for ahost nameand/ soneDepart nent / pi ct ure. gi f for apath name. A browser isauser agent

for the Web; it displays to the user the requested Web page and provides numerous navigational and configuration features. Web browsers
also implement the client side of HTTP. Thus, in the context of the Web, we will interchangeably use the words "browser" and "client”.
Popular Web browsers include Netscape Communicator and Microsoft Explorer. A Web server houses Web objects, each addressable by
aURL. Web servers also implement the server side of HTTP. Popular Web serversinclude Apache, Microsoft Internet I nformation

Server, and the Netscape Enterprise Server. (Netcraft provides a nice survey of Web server penetration [Netcraft].)

HTTP defines how Web clients (i.e., browsers) request Web pages from servers (i.e., Web servers) and how servers transfer Web pages to
clients. We discuss the interaction between client and server in detail below, but the general ideaisillustrated in Figure 2.2-1. When a
user requests a Web page (e.g., clicks on a hyperlink), the browser sends HT TP request messages for the objectsin the page to the server.
The server receives the requests and responds with HT TP response messages that contain the objects. Through 1997 essentially all
browsers and Web servers implement version HTTP/1.0, which is defined in [RFC 1945]. Beginning in 1998 Web servers and browsers

began to implement version HTTP/1.1, which is defined in [RFC 2068]. HTTP/1.1 is backward compatible with HTTP/1.0; aWeb server
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running 1.1 can "talk" with abrowser running 1.0, and a browser running 1.1 can "talk" with a server running 1.0.

PZ running
Ezxzplorer

= Workstation running

the NCEA Web server

MMaec running
Mawvigator

Figure 2.2-1: HTTP request-response behavior

Both HTTP/1.0 and HTTP/1.1 use TCP as their underlying transport protocol (rather than running on top of UDP). The HTTP client first
initiates a TCP connection with the server. Once the connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket interface is the "door" between the client process and the
TCP connection; on the server sideit isthe "door" between the server process and the TCP connection. The client sends HTTP request
messages into its socket interface and receives HT TP response messages from its socket interface. Similarly, the HTTP server receives
request messages from its socket interface and sends response messages into the socket interface. Once the client sends a message into its
socket interface, the messageis "out of the client's hands® and is"in the hands of TCP". Recall from Section 2.1 that TCP provides a
reliable data transfer service to HTTP. Thisimplies that each HT TP request message emitted by a client process eventually arrivesin tact
at the server; similarly, each HTTP response message emitted by the server process eventually arrivesin tact at the client. Here we see one
of the great advantages of alayered architecture - HTTP need not worry about lost data, or the details of how TCP recovers from loss or
reordering of datawithin the network. That isthejob of TCP and the protocolsin the lower layers of the protocol stack.

TCP aso employs a congestion control mechanism which we shall discuss in detail in Chapter 3. We only mention here that this
mechanism forces each new TCP connection to initially transmit data at arelatively slow rate, but then allows each connection to ramp up
to arelatively high rate when the network is uncongested. The initial slow-transmission phase is referred to as slow start.

It isimportant to note that the server sends requested files to clients without storing any state information about the client. If a particular
client asks for the same object twicein aperiod of afew seconds, the server does not respond by saying that it just served the object to the
client; instead, the server resends the object, as it has completely forgotten what it did earlier. Because an HTTP server maintains no
information about the clients, HTTP is said to be a stateless protocal.

2.2.2 Non-Persistent and Persistent Connections

HTTP can use both non-persistent connections and persistent connections. Non-persistent connections is the default mode for HTTP/1.0.
Conversely, persistent connectionsis the default mode for HTTP/1.1.

Non-Persistent Connections

Let uswalk through the steps of transferring a Web page from server to client for the case of non-persistent connections. Suppose the page
consists of abase HTML file and 10 JPEG images, and that al 11 of these objects reside on the same server. Suppose the URL for the
base HTML fileis

www. soneSchool . edu/ soneDepar t ment / hone. i ndex .
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The HyperText Transfer Protocol

Here iswhat happens:

1. The HTTP client initiates a TCP connection to the server www. soneSchool . edu. Port number 80 is used as the default port
number at which the HTTP server will be listening for HTTP clients that want to retrieve documents using HTTP.

2. The HTTP client sends a HTTP request message into the socket associated with the TCP connection that was established in step 1.
The request message either includes the entire URL or simply the path name/ soneDepar t ment / hone. | ndex. (Wewill
discuss the HTTP messages in some detail below.)

3. The HTTP server receives the request message via the socket associated with the connection that was established in step 1,
retrievesthe object / soneDepar t ment / hone. i ndex from its storage (RAM or disk), encapsulates the objectinaHTTP
response message, and sends the response message into the TCP connection.

4, The HTTP server tells TCP to close the TCP connection. (But TCP doesn't actually terminate the connection until the client has
received the response message in tact.)

5. The HTTP client receives the response message. The TCP connection terminates. The message indicates that the encapsul ated
object isan HTML file. The client extracts the file from the response message, parses the HTML file and finds references to the ten
JPEG objects.

6. Thefirst four steps are then repeated for each of the referenced JPEG objects.

Asthe browser receives the Web page, it displays the page to the user. Two different browsers may interpret (i.e., display to the user) a
Web page in somewhat different ways. HTTP has nothing to do with how a Web page is interpreted by a client. The HT TP specifications
([RFC 1945] and [RFC 2068]) only define the communication protocol between the client HTTP program and the server HTTP program.

The steps above use non-persistent connections because each TCP connection is closed after the server sends the object -- the connection
does not persist for other objects. Note that each TCP connection transports exactly one request message and one response message. Thus,
in this example, when a user requests the Web page, 11 TCP connections are generated.

In the steps described above, we were intentionally vague about whether the client obtains the 10 JPEGs over ten serial TCP connections,
or whether some of the JPEGs are obtained over parallel TCP connections. Indeed, users can configure modern browsers to control the
degree of parallelism. In their default modes, most browsers open five to ten parallel TCP connections, and each of these connections
handles one request-response transaction. If the user prefers, the maximum number of parallel connections can be set to one, in which case
the ten connections are established serially. Aswe shall see in the next chapter, the use of parallel connections shortens the response time
sinceit cuts out some of the RTT and slow-start delays. Parallel TCP connections can aso alow the requesting browser to steal alarger
share of itsfair share of the end-to-end transmission bandwidth.

Before continuing, let's do a back of the envelope calculation to estimate the amount of time from when a client requests the base HTML
file until thefileisreceived by the client. To this end we define the round-trip time RTT, which isthe time it takes for a small packet to
travel from client to server and then back to the client. The RTT includes packet propagation delays, packet queuing delays in intermediate
routers and switches, and packet processing delays. (These delays were discussed in Section 1.6.) Now consider what happens when a user
clicks on ahyperlink. This causes the browser to initiate a TCP connection between the browser and the Web server; thisinvolves a"three-
way handshake" -- the client sends a small TCP message to the server, the server acknowledges and responds with a small message, and
finally the client acknowledges back to the server. One RTT elapses after the first two parts of the three-way handshake. After completing
the first two parts of the handshake, the client sends the HT TP request message into the TCP connection, and TCP "piggybacks' the last
acknowledgment (the third part of the three-way handshake) onto the request message. Once the request message arrives at the server, the
server sendsthe HTML file into the TCP connection. This HT TP request/response eats up another RTT. Thus, roughly, the total response
timeis 2RTT plus the transmission time at the server of the HTML file.

Per sistent Connections

Non-persistent connections have some shortcomings. First, a brand new connection must be established and maintained for each requested
object. For each of these connections, TCP buffers must be allocated and TCP variables must be kept in both the client and server. This
can place a serious burden on the Web server, which may be serving requests from hundreds of different clients simultaneously. Second,
aswe just described, each object sufferstwo RTTs-- one RTT to establish the TCP connection and one RTT to request and receive an
object. Finally, each object suffers from TCP slow start because every TCP connection begins with a TCP slow-start phase. However, the
accumulation of RTT and slow start delaysis partially aleviated by the use of parallel TCP connections.
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With persistent connections, the server leaves the TCP connection open after sending responses. Subsequent requests and responses
between the same client and server can be sent over the same connection. In particular, an entire Web page (in the example above, the
base HTML file and the ten images) can be sent over a single persistent TCP connection; moreover, multiple Web pages residing on the
same server can be sent over one persistent TCP connection. Typically, the HTTP server closes the connection when it isn't used for a
certain time (the timeout interval), which is often configurable. There are two versions of persistent connections: without pipelining and
with pipélining. For the version without pipelining, the client issues a new request only when the previous response has been received. In
this case, each of the referenced objects (the ten images in the example above) experiences one RTT in order to request and receive the
object. Although thisis an improvement over non-persistent'stwo RTTs, the RTT delay can be further reduced with pipelining. Another
disadvantage of no pipelining is that after the server sends an object over the persistent TCP connection, the connection hangs -- does
nothing -- while it waits for another request to arrive. This hanging wastes server resources.

The default mode of HTTP/1.1 uses persistent connections with pipelining. In this case, the HTTP client issues arequest as soon as it
encounters areference. Thusthe HTTP client can make back-to-back requests for the referenced objects. When the server receives the
reguests, it can send the objects back-to-back. If all the requests are sent back-to-back and all the responses are sent back-to-back, then
only one RTT is expended for all the referenced objects (rather than one RTT per referenced object when pipelining isn't used).
Furthermore, the pipelined TCP connection hangs for a smaller fraction of time. In addition to reducing RTT delays, persistent
connections (with or without pipelining) have a smaller slow-start delay than non-persistent connections. Thisis because that after sending
the first object, the persistent server does not have to send the next object at the initial slow rate since it continues to use the same TCP
connection. Instead, the server can pick up at the rate where the first object left off. We shall quantitatively compare the performance of
non-persistent and persistent connections in the homework problems of Chapter 3. The interested reader is also encouraged to see
[Heidemann 1997] and [Nielsen 1997].

2.2.3 HTTP Message Format

The HTTP specifications 1.0 ([RFC 1945] and 1.1 [RFC 2068]) define the HT TP message formats. There are two types of HTTP
messages, request messages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide atypical HTTP request message:

CET /sonedir/ page. htl HITP/ 1.1
Connection: cl ose

User-agent: Modzilla/4.0

Accept: text/htm, inage/gif, image/jpeg
Accept - | anguage: fr

(extra carriage return, line feed)

We can learn alot my taking a good look at this simple request message. First of al, we see that the message is written in ordinary ASCI|
text, so that your ordinary computer-literate human being can read it. Second, we see that the message consists of five lines, each followed
by acarriage return and aline feed. The last lineis followed by an additional carriage return and line feed. Although this particular request
message has five lines, arequest message can have many more lines or aslittle as one line. Thefirst line of aHTTP request messageis
called the request line; the subsequent lines are called the header lines. The request line has three fields. the method field, the URL field,
and the HTTP version field. The method field can take on several different values, including GET, POST, and HEAD. The great majority of

HTTP request messages use the GET method. The GET method is used when the browser requests an object, with the requested object
identified in the URL field. In this example, the browser is requesting the object / sonedi r/ page. ht m . (The browser doesn't have to

specify the host name in the URL field since the TCP connection is aready connected to the host (server) that serves the requested file.)
The version is self-explanatory; in this example, the browser implements version HTTP/1.1.

Now let'slook at the header linesin the example. By including the Connect i on: cl ose header line, the browser is telling the server

that it doesn't want to use persistent connections; it wants the server to close the connection after sending the requested object. Thus the
browser that generated this request message implements HTTP/1.1 but it doesn't want to bother with persistent connections. The User -

agent : header line specifies the user agent, i.e., the browser type that is making the request to the server . Here the user agent is
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Mozi | | a/ 4. 0, aNetscape browser. This header line is useful because the server can actually send different versions of the same object
to different types of user agents. (Each of the versionsis addressed by the same URL.) The Accept : header linetells the server the
type of objects the browser is prepared to accept. In this case, the client is prepared to accept HTML text, a GIF image or a JPEG image. If
thefile/ somedi r/ page. ht Ml contains a Java applet (and who says it can't!), then the server shouldn't send the file, since the browser
can not handle that object type. Finally, the Accept - | anguage: header indicates that the user prefersto receive a French version of
the object, if such an object exists on the server; otherwise, the server should send its default version.

Having looked at an example, let us now look at the general format for arequest message, as shown in Figure 2.2-2:

method |sp| URL |sp | wversion |cr| If reﬁlr?ees"
If
°
Py header
* ines
If

cr| If

Entity Body

Figure 2.2-2: general format of arequest message

We see that the general format follows closely the example request message above. Y ou may have noticed, however, that after the header
lines (and the additional carriage return and line feed) there is an "Entity Body". The Entity Body is not used with the GET method, but is
used with the POST method. The HTTP client uses the POST method when the user fills out aform -- for example, when a user gives
search words to a search engine such as Y ahoo. With a POST message, the user is still requesting a Web page from the server, but the
specific contents of the Web page depend on what the user wrote in the form fields. If the value of the method field is POST, then the
entity body contains what the user typed into the form fields. The HEAD method is similar to the POST method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out the requested object. The HEAD method is often
used by HTTP server developers for debugging.

HTTP Response M essage

Below we provide atypical HTTP response message. This response message could be the response to the example request message just
discussed.

HTTP/ 1.1 200 K

Connection: cl ose

Date: Thu, 06 Aug 1998 12:00: 15 GV

Server: Apache/1.3.0 (Unix)

Last - Modi fied: Mon, 22 Jun 1998 09: 23: 24 GV
Cont ent - Lengt h: 6821

Content-Type: text/htnl

data data data data data ...

Let'stake a careful ook at this response message. It has three sections: an initial statusline, six header lines, and then the entity body.
The entity body isthe meat of the message -- it contains the requested object itself (represented by data data data data data ...). The
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status line has three fields: the protocol version field, a status code, and a corresponding status message. In this example, the status line
indicates that the server isusing HTTP/1.1 and that that everything is OK (i.e., the server has found, and is sending, the requested object).

Now let's look at the header lines. The server usesthe Connect i on: cl ose header lineto tell the client that it is going to close the
TCP connection after sending the message. The Dat e: header line indicates the time and date when the HTTP response was created and
sent by the server. Note that thisis not the time when the object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message and sends the response message. The Ser ver : header line
indicates that the message was generated by an Apache Web server; it isanalogousto the User - agent : header lineinthe HTTP
request message. The Last - Modi fi ed: header line indicates the time and date when the object was created or last modified. The
Last - Modi fi ed: header, which we cover in more detail below, is critical for object caching, both in the local client and in network
cache (a.k.a. proxy) servers. The Cont ent - Lengt h: header line indicates the number of bytesin the object being sent. The Cont ent -
Type: header line indicates that the object in the entity body is HTML text. (The object type is officially indicated by the Cont ent -
Type: header and not by the file extension.)

Note that if the server receives an HTTP/1.0 request, it will not use persistent connections, even if itisan HTTP/1.1 server. Instead the
HTTP/1.1 server will close the TCP connection after sending the object. Thisis necessary because an HTTP/1.0 client expects the server
to close the connection.

If status
line

header
lines

Entity Body

Figure 2.2-3: Generd format of aresponse message

Having looked at an example, let us now examine the general format of a response message, which is shown in Figure 2.2-3. This general
format of the response message matches the previous example of aresponse message. Let's say a few additional words about status codes
and their phrases. The status code and associated phrase indicate the result of the request. Some common status codes and associated
phrases include:

. 200 OK: Reguest succeeded and the information is returned in the response.
. 301 Moved Permanent | y: Requested object has been permanently moved; new URL is specifiedin Locat i on: header of
the response message. The client software will automatically retrieve the new URL.
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. 400 Bad Request: A generic error code indicating that the request could not be understood by the server.
. 404 Not Found: Therequested document does not exist on this server
. 505 HTTP Version Not Supported: Therequest HTTP protocol version is not supported by the server.

How would you like to see areal HTTP response message? Thisis very easy to do! First Telnet into your favorite WWW server. Then
type in aone-line request message for some object that is housed on the server. For example, if you can logon to a Unix machine, type:

tel net wwwv. eurecom fr 80
GET /~ross/index. htnl HTTP/ 1.0

(Hit the carriage return twice after typing the second line.) This opens a TCP connection to port 80 of the host www. eur ecom fr and
then sends the HTTP GET command. Y ou should see a response message that includes the base HTML file of Professor Ross's homepage.
If you'd rather just see the HTTP message lines and not receive the object itself, replace GET with HEAD. Finally, replace /~ross/index.

html with /~ross/banana.html and see what kind of response message you get.

In this section we discussed a number of header lines that can be used within HTTP request and response messages. The HTTP
specification (especialy HTTP/1.1) defines many, many more header lines that can be inserted by browsers, Web servers and network
cache servers. We have only covered asmall fraction of the totality of header lines. We will cover afew more below and another small
fraction when we discuss network Web caching at the end of this chapter. A readable and comprehensive discussion of HTTP headers and
status codes is given in [Luotonen 1998]. An excellent introduction to the technical issues surrounding the Web is[Y eager 1996].

How does a browser decide which header linesit includes in a request message? How does a Web server decide which header lines it
includes in a response messages? A browser will generate header lines as a function of the browser type and version (e.g., an HTTP/1.0
browser will not generate any 1.1 header lines), user configuration of browser (e.g., preferred language) and whether the browser currently
has a cached, but possibly out-of-date, version of the object. Web servers behave similarly: there are different products, versions, and
configurations, al of which influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Authentication and Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design, and has permitted engineersto develop very high-
performing Web servers. However, it is often desirable for a Web site to identify users, either because the server wishes to restrict user
access or because it wants to serve content as a function of the user identity. HTTP provides two mechanisms to help a server identify a
user: authentication and cookies.

Authentication

Many sites require usersto provide a username and a password in order to access the documents housed on the server. This requirement is
referred to as authentication. HTTP provides special status codes and headers to help sites perform authentication. Let us walk through an
exampleto get afed for how these special status codes and headers work.. Suppose a client requests an object from a server, and the
server requires user authorization.

1. Theclient first sends an ordinary request message with no special header lines.

2. The server then responds with empty entity body and witha401 Aut hori zati on Requi r ed status code. In this response
message the server includes the WWV Aut hent i cat e:  header, which specifies the details about how to perform authentication.
(Typicaly, it indicates to the user needs to provide a username and a password.)

3. Theclient receives the response message and prompts the user for a username and password. The client resends the request
message, but thistimeincludes an Aut hor i zat i on: header line, which includes the username and password.

After obtaining the first object, the client continues to send the username and password in subsequent requests for objects on the server.
(Thistypically continues until the client closes his browser. However, while the browser remains open, the username and password are
cached, so the user is not prompted for a username and password for each object it requests!) In this manner, the site can identify the user
for every request.
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We will seein Chapter 7 that HT TP performs a rather weak form of authentication, one that would not be difficult to break. We will study
more secure and robust authentication schemes later in Chapter 7.

Cookies

Cookies are an dternative mechanism for sites to keep track of users. They are defined in RFC 2109. Some Web sites use cookies and

others don't. Let'swalk through an example. Suppose a client contacts a Web site for the first time, and this site uses cookies. The server’s
response will include a Set - cooki e: header. Often this header line contains an identification number generated by the Web server.
For example, the header line might be:

Set - cooki e: 1678453

When the the HT TP client receives the response message, it seesthe Set - cooki e: header and identification number. It then appends a
lineto aspecial cookiefilethat is stored in the client machine. Thisline typically includes the host name of the server and user's
associated identification number. In subsequent requests to the same server, say one week later, the client includes a Cooki e: request

header, and this header line specifies the identification number for that server. In the current example, the request message includes the
header line:

Cooki e: 1678453

In this manner, the server does not know the username of the user, but the server does know that this user is the same user that made a
specific request one week ago.

Web servers use cookies for many different purposes:

. If aserver requires authentication but doesn't want to hassle a user with a username and password prompt every time the user visits
the site, it can set acookie.

. If aserver wants to remember a user's preferences so that it can provide targeted advertising during subsequent visits, it can set a
cookie.

. If auser isshopping at asite (e.g., buying several CDs), the server can use cookies to keep track of the itemsthat the user is
purchasing, i.e., to create a virtual shopping cart.

We mention, however, that cookies pose problems for mobile users who access the same site from different machines. The site will treat
the same user as a different user for each different machine used. We conclude by pointing the reader to the page Persistent Client State

HTTP Cookies, which provides an in-depth but readabl e introduction to cookies. We also recommend Cookies Central, which includes
extensive information on the cookie controversy.

2.2.5 The Conditional GET

By storing previously retrieved objects, Web caching can reduce object-retrieval delays and diminish the amount of Web traffic sent over
the Internet. Web caches can residein aclient or in an intermediate network cache server. We will discuss network caching at the end of
this chapter. In this subsection, we restrict our attention to client caching.

Although Web caching can reduce user-perceived response times, it introduces a new problem -- a copy of an object residing in the cache
may be stale. In other words, the object housed in the Web server may have been modified since the copy was cached at the client.
Fortunately, HTTP has a mechanism that allows the client to employ caching while still ensuring that all objects passed to the browser are
up-to-date. This mechanismis called the conditional GET. An HTTP request message is a so-called conditional GET messageif (i) the
request message uses the GET method and (i) the request messageincludesan | f - Modi fi ed- Si nce: header line.

To illustrate how the conditional GET operates, let's walk through an example. First, a browser requests an uncached object from some
Web server:

GET /fruit/kiwi.gif HTTP/ 1.0
User-agent: Mzilla/4.0
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Accept: text/htm, inage/gif, inmage/jpeg

Second, the Web server sends a response message with the object to the client:

HTTP/ 1.0 200 OK

Date: Wed, 12 Aug 1998 15:39:29

Server: Apache/1.3.0 (Unix)

Last - Modi fied: Mn, 22 Jun 1998 09: 23: 24
Content - Type: image/gif

data data data data data ...

The client displays the object to the user but also saves the object in itslocal cache. Importantly, the client also caches the last-modified
date along with the object. Third, one week later, the user requests the same object and the object is still in the cache. Since this object
may have been modified at the Web server in the past week, the browser performs an up-to-date check by issuing conditional GET.
Specifically, the browser sends

GET /fruit/kiwi.gif HTTP/ 1.0

User-agent: Modzilla/4.0

Accept: text/htm, image/gif, imge/jpeg

| f-nodi fied-since: Mon, 22 Jun 1998 09:23: 24

Note that the value of the | f - modi f i ed- si nce: header lineisexactly equal to value of the Last - Modi fi ed: header line that

was sent by the server one week ago. This conditional GET istelling the server to only send the object if the object has been modified
since the specified date. Suppose the object has not been modified since22 Jun 1998 09: 23: 24. Then, fourth, the Web server sends

aresponse message to the client:

HTTP/ 1.0 304 Not Modified
Date: Wed, 19 Aug 1998 15:39: 29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a response message, but it doesn't bother to include the
requested object in the response message. Including the requested object would only waste bandwidth and increase user perceived
response time, particularly if the object islarge (such as a high resolution image). Note that this last response message has in the status line
304 Not Mbdi fi ed, whichtellsthe client that it can go ahead and use its cached copy of the object.

2.2.6 Web Caches

A Web cache -- adso called aproxy server -- isanetwork entity that satisfies HTTP requests on the behalf of aclient. The Web cache
has its own disk storage, and keeps in this storage copies of recently requested objects. As shown in Figure 2.2-4, users configure their
browsers so that all of their HTTP requests are first directed to the Web cache. (Thisis a straightforward procedure with Microsoft and
Netscape browsers.) Once abrowser is configured, each browser request for an object isfirst directed to the Web cache. As an example,
suppose a browser is requesting the object http://www.someschool .edu/campus.gif .

. The browser establishes a TCP connection to the proxy server and sends an HT TP request for the object to the Web cache.

. TheWeb cache checks to seeif it has a copy of the object stored locally. If it does, the Web cache forwards the object within an
HTTP response message to the client browser.

. If the Web cache does not have the object, the Web cache opens a TCP connection to the origin server, that is, to www.someschool.
edu. The Web cache then sends an HTTP request for the object into the TCP connection. After receiving this request, the origin
server sends the object within an HTTP response to the Web cache.

. When the Web cache receives the object, it stores acopy initsloca storage and forwards a copy, within an HTTP response
message, to the client browser (over the existing TCP connection between the client browser and the Web cache).
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Figure 2.2-4. Clients requesting objects through a Web cache.

Note that a cache is both a server and a client at the same time. When it receives requests from and sends responses to abrowser, itisa
server. When it sends requests to and receives responses from an origin server it isaclient.

So why bother with a Web cache? What advantages does it have? Web caches are enjoying wide-scale deployment in the Internet for at
least three reasons. First, a Web cache can substantially reduce the response time for a client request, particularly if the bottleneck
bandwidth between the client and the origin server is much less than the bottleneck bandwidth between the client and the cache. If thereis
a high-speed connection between the client and the cache, as there often is, and if the cache has the requested object, then the cache will be
ableto rapidly deliver the object to the client. Second, as we will soon illustrate with an example, Web caches can substantially reduce
traffic on an institution's access link to the Internet. By reducing traffic, the institution (e.g., acompany or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the Internet asa
whole, thereby improving performance for al applications. In 1998, over 75% of Internet traffic was Web traffic, so a significant
reduction in Web traffic can trandate into a significant improvement in Internet performance [Claffy 1998]. Third, an Internet dense with
Web caches -- e.g., at institutional, regional and national levels -- provides an infrastructure for rapid distribution of content, even for
content providers who run their sites on low-speed servers behind low-speed access links. If such a"resouce-poor" content provider
suddenly has popular content to distribute, this popular content will quickly be copied into the Internet caches, and high user demand will
be satisfied.

To gain adeeper understanding of the benefits of caches, let us consider an example in the context of Figure 2.2-5. In this figure, there are
two networks - the ingtitutional network and the Internet. The institutional network is a high-speed LAN. A router in the institutional
network and arouter in the Internet are connected by a 1.5 Mbps link. The institutional network consists of a high-speed LAN whichis
connected to the Internet through a 1.5 Mbps access link. The origin servers are attached to the Internet, but located all over the globe.
Suppose that the average object size is 100 Kbits and that the average request rate from the institution's browsers to the origin serversis 15
requests per second. Also suppose that amount of time it takes from when the router on the Internet side of the accesslink in Figure 2.2-5
forwards an HTTP request (within an |P datagram) until it receives the IP datagram (typically, many IP datagrams) containing the
corresponding response istwo seconds on average. Informally, we refer to this last delay as the "Internet delay”.

The total response time -- that is the time from when a browser requests an object until the browser receives the object -- is the sum of the
LAN delay, the access delay (i.e., the delay between the two routers) and the Internet delay. Let us now do avery crude calculation to
estimate this delay. The traffic intensity on the LAN (see Section 1.6) is

(15 regquests/sec)* (100 Khits/request)/(10Mbps) = .15
whereas the traffic intensity on access link (from Internet router to institution router) is
(15 requests/sec)* (100 Kbits/request)/(1.5 Mbps) = 1
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A traffic intensity of .15 on aLAN typically resultsin at most tens of milliseconds of delay; hence, we can neglect the LAN delay.
However, as discussed in Section 1.6, as the traffic intensity approaches 1 (asis the case of the access link in Figure 2.2-5), the delay on a
link becomes very large and grows without bound. Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution's users. Clearly something must be done.

arigin
SErvVErs
Internet
router
1.8 Mbps
access link
institutional
10 Mbps netwiork

HEEE N

browsers

Figure 2.2-5: Bottleneck between institutional network and the Internet.

One possible solution is to increase the access rate from 1.5 Mbps to, say, 10 Mbps. Thiswill lower the traffic intensity on the access link
to .15, which trandlates to negligible delays between the two routers. In this case, the total response response time will roughly be 2
seconds, that is, the Internet delay. But this solution also means that the institution must upgrade its access link from 1.5 Mbpsto 10
Mbps, which can be very costly.

Now consider the alternative solution of not upgrading the access link but instead installing a Web cache in the ingtitutional network. This
solution isillustrated in Figure 2.2-6. Hit rates -- the fraction of requests that are satisfied by a cache -- typically range from .2t0 .7 in
practice. For illustrative purposes, let us suppose that the cache provides a hit rate of .4 for this institution. Because the clients and the
cache are connected to the same high-speed LAN, 40% of the requests will be satisfied almost immediately, say within 10 milliseconds,
by the cache. Nevertheless, the remaining 60% of the requests still need to be satisfied by the origin servers. But with only 60% of the
requested objects passing through the access link, the traffic intensity on the access link is reduced from 1.0to .6 . Typically atraffic
intensity less than .8 correspondsto asmall delay , say tens of milliseconds, on a 1.5 Mbps link, which is negligible compared with the 2
second Internet delay. Given these considerations, average delay thereforeis

.4*(0.010 seconds) + .6*(2.01 seconds)

which isjust dlightly larger than 2.1 seconds. Thus, this second solution provides an even lower response time then the first solution, and it
doesn't require the ingtitution to upgrade its access rate. The institution does, of course, have to purchase and install a Web cache. But this
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cost islow -- many caches use public-domain software that run on inexpensive servers and PCs.

arigin
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Internet
router
1.5 Mbps
access link
institutional
netwiork

institutional
cache

browsers

Figure 2.2-6. Adding a cache to the institutional network.

Cooperative Caching

Multiple Web caches, located at different places in the Internet, can cooperate and improve overall performance. For example, an
institutional cache can be configured to send its HTTP requests to a cache in a backbone ISP at the national level. In this case, when the
ingtitutional cache does not have the requested object in its storage, it forwards the HTTP request to the national cache. The nationa cache
then retrieves the object from its own storage or, if the object is not in storage, from the origin server. The national cache then sends the
object (within an HT TP response message) to the institutional cache, which in turn forwards the object to the requesting browser.
Whenever an object passes through a cache (institutional or national), the cache leaves a copy initsloca storage. The advantage of
passing through a higher-level cache, such asanationa cache, isthat it has alarger user population and therefore higher hit rates.

An example of cooperative caching system isthe NLANR caching system, which consists of a number of backbone cachesin the US
providing service to institutional and regional caches from all over the globe [NLANR]. The NLANR caching hierarchy is shown in
Figure 2.2-7 [Huffaker 1998]. The caches obtain objects from each other using a combination of HTTP and ICP (Internet Caching
Protocol). ICP is an application-layer protocol that allows one cache to quickly ask another cache if it has a given document [RFC 2186]; a
cache can then use HTTP to retrieve the object from the other cache. ICP is used extensively in many cooperative caching systems, and is
fully supported by Squid, a popular public-domain software for Web caching [Squid]. If you are interested in learning more about |CP,
you are encouraged to see [Luotonen 1998] [Ross 1998] and the ICP RFC [RFC 2186].
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Figure 2.2-7: The NLANR caching hierarchy. (Courtesy of [Huffaker 1998]).

An dternative form of cooperative caching involves clusters of caches, often co-located on the same LAN. A single cache is often
replaced with a cluster of caches when the single cache is not sufficient to handle the traffic or provide sufficient storage capacity.
Although cache clustering is a natural way to scale as traffic increases, they introduce a new problem: When a browser wants to request a
particular object, to which cache in the cache cluster should it send the request? This problem can be el egantly solved using hash routing
(If you are not familiar with hash functions, you can read about them in Chapter 7.) In the simplest form of hash routing, the browser
hashes the URL, and depending on the result of the hash, the browser directs its request message to one of the cachesin the cluster. By
having all the browsers use the same hash function, an object will never be present in more than one cache in the cluster, and if the object
isindeed in the cache cluster, the browser will aways direct its request to the correct cache. Hash routing is the essence of the Cache
Array Routing Protocol (CARP). If you are interested in learning more about hash routing or CARP, see [Valloppillil 1997], [L uotonen

1998], [Ross 1998] and [Ross 1997].

Web caching is arich and complex subject; over two thirds (40 pages) of the HTTP/1.1 RFC is devoted to Web caching [RFC 2068]! Web

caching has also enjoyed extensive research and product development in recent years. Furthermore, caches are now being built to handle
streaming audio and video. Caches will likely play an important role as the Internet begins to provide an infrastructure for the large-scale,
on-demand distribution of music, television shows and moviesin the Internet.

References
Some of the best information about HT TP can be found in the W3C pages. Their overview page is an excellent starting point for awealth

of information about the HTTP activities at the W3C. Y ou will aso find material on HTTP-Next Generation and Web caching. If you are
interested in HTTP, the W3C site will keep you busy for along, long time.
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2.3 File Transfer: FTP

FTP (File Transfer Protocol) isaprotocol for transferring afile from one host to another host. The protocol
dates back to 1971 (when the Internet was still an experiment), but remains enormously popular. FTPis
described in [REC 959]. Figure 2.3-1 provides an overview of the services provided by FTP.

user agent
#ll= ETE file transfer ETE
LSer : Lt N
: client Server
Interface
local remote
file file
SyStem SyStem

Figure 2.3-1: FTP movesfiles between local and remote file systems.

Inatypical FTP session, the user is sitting in front of one host (the local host) and wantsto transfer filesto or
from aremote host. In order for the user to access the remote account, the user must provide a user
identification and a password. After providing this authorization information, the user can transfer files from the
local file system to the remote file system and vice versa. As shown in Figure 2.3-1, the user interacts with FTP
through an FTP user agent. The user first provides the hostname of the remote host, which causes the FTP client
process in the local host to establish a TCP connection with the FTP server process in the remote host. The user
then provides the user identification and password, which get sent over the TCP connection as part of FTP
commands. Once the server has authorized the user, the user copies one or more files stored in the local file
system into the remote file system (or vice versa).

HTTP and FTP are both file transfer protocols and have many common characteristics; for example, they both
run on top of TCP, the Internet's connection-oriented, transport-layer, reliable data transfer protocol. However,
the two application-layer protocols have some important differences. The most striking differenceisthat FTP
uses two parallel TCP connections to transfer afile, acontrol connection and adata connection. The control
connection is used for sending control information between the two hosts -- information such as user
identification, password, commands to change remote directory, and commands to "put” and "get" files. The
data connection is used to actually send afile. Because FTP uses a separate control connection, FTPissaid to
send its control information out-of-band. In Chapter 6 we shall see that the RTSP protocol, which is used for
controlling the transfer of continuous media such as audio and video, also sends its control information out-of-
band. HTTP, as you recall, sends request and response header lines into the same TCP connection that carries
the transferred file itself. For thisreason, HTTP is said to send its control information in-band. In the next
section we shall see that SMTP, the main protocol for electronic mail, also sends control information in-band.
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The FTP control and data connections areillustrated in Figure 2.3-2.

TCF control connection:

port 21
FTP |= » FTP
Client |a s SEMVES
TP data connection:
port 20

Figure 2.3-2: Control and data connections

When a user starts an FTP session with aremote host, FTP first sets up a control TCP connection on server port
number 21. The client side of FTP sends the user identification and password over this control connection. The
client side of FTP aso sends, over the control connection, commands to change the remote directory. When the
user requests afile transfer (either to, or from, the remote host), FTP opens a TCP data connection on server
port number 20. FTP sends exactly one file over the data connection and then closes the data connection. If,
during the same session, the user wants to transfer another file, FTP opens another data TCP connection. Thus,
with FTP, the control connection remains open throughout the duration of the user session, but a new data
connection is created for each file transferred within a session (i.e., the data connections are non-persistent).

Throughout a session, the FTP server must maintain state about the user. In particular, the server must associate
the control connection with a specific user account, and the server must keep track of the user's current directory
as the user wanders about the remote directory tree. Keeping track of this state information for each ongoing
user session significantly impedes the total number of sessions that FTP can maintain simultaneously. HTTP, on
the other hand, is stateless -- it does not have to keep track of any user state.

FTP Commands and Replies

We end this section with a brief discussion of some of the more common FTP commands. The commands, from
client to server, and replies, from server to client, are sent across the control TCP connection in 7-bit ASCI|
format. Thus, like HTTP commands, FTP commands are readable by people. In order to delineate successive
commands, a carriage return and line feed end each command (and reply). Each command consists of four
uppercase ASCII characters, some with optional arguments. Some of the more common commands are given
below (with optionsin italics):

« USER username : Used to send the user identification to server.
. PASS password : Used to send the user password to the server.
. LI ST : Used to ask the server to send back alist of al the filesin the current remote directory. Thelist

of filesis sent over a (new and non-persistent) data TCP connection and not over the control TCP
connection.
. RETRfilename: Used to retrieve (i.e., get) afile from the current directory of the remote host.

. STORfilename : Used to store (i.e., put) afileinto the current directory of the remote host.

Thereistypically a one-to-one correspondence between the command that the user issues and the FTP
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command sent across the control connection. Each command is followed by areply, sent from server to client.
The replies are three-digit numbers, with an optional message following the number. Thisis similar in structure
to the status code and phrase in the status line of the HT TP response message; the inventorsof HTTP
intentionally included this similarity in the HTTP response messages. Some typical replies, along with their
possible messages, are as follows:

. 331 Usernane OK, password required

. 125 Data connection already open; transfer starting
. 425 Can't open data connection

« 452 Error witing file

Readers who are interested in learning about the other FTP commands and replies are encouraged to read [RFC
959].

References

[RFC 959] J.B. Postel and J.K. Reynolds, "File Transfer Protocol,” [RFC 959], October 1985.

Search RFCs and Internet Drafts

If you are interested in an Internet Draft relating to a certain subject or protocol enter the keyword(s) here.

Query:

Press button to submit your query or reset the form: | Submit || Reset

Query Options:

[0] Case insensitive

M aximum number of hits; |25

Return to Table Of Contents

file:///D|/Downloads/Livros/computacéio/Computer%20Net...-Down%20A pproach%20Featuring%20the%20I nternet/ftp.htm (3 of 4)20/11/2004 15:51:54


file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#43

Keith\book\applications\smtp

Copyright Keith W. Ross and James F. Kurose 1996-2000 . All rights reserved.

file:///D)/Downloads/Livros/computacéio/Computer%20NEet...-Down%20A pproach%20Featuring%20the%20I nternet/ftp.htm (4 of 4)20/11/2004 15:51:54



K eith\book\applications\smtp

2.4 Electronic Mail in the Internet

Along with the Web, electronic mail is one of the most popular Internet applications. Just like ordinary "snail mail," email is
asynchronous -- people send and read messages when it is convenient for them, without having to coordinate with other
peoples schedules. In contrast with snail mail, electronic mail isfast, easy to distribute, and inexpensive. Moreover, modern
electronic mail messages can include hyperlinks, HTML formatted text, images, sound and even video. In this section we will
examine the application-layer protocols that are at the heart of Internet electronic mail. But before we jump into an in-depth
discussion of these protocols, let's take a bird's eye view of the Internet mail system and its key components.

mail Key:
server O = user mailbox
user 1 I'1| = outgoing message
agents [ queue
r user
SMTP Iagents
user ]
agents l
mail
server

Figure 2.4-1: A bird's eye view of the Internet e-mail system.

Figure 2.4-1 presents a high-level view of the Internet mail system. We see from this diagram that it has three major
components. user agents, mail servers, and the Simple Mail Transfer Protocol (SMTP). We now describe each of these
P
& o
. . ¥ . . . rs
components in the context of a sender, Alice u , sending an email messageto arecipient, Bob  # . User agents
allow usersto read, reply to, forward, save, and compose messages. (User agents for electronic mail are sometimes called mail
readers, although we will generally avoid this term in thisbook.) When Aliceis finished composing her message, her user
agent sends the message to her mail server, where the message is placed in the mail server's outgoing message queue. When
Bob wants to read a message, his user agent obtains the message from his mailbox in his mail server. In the late 1990s, GUI
(graphical user interface) user agents became popular, allowing users to view and compose multimedia messages. Currently,
Eudora, Microsoft's Outlook Express, and Netscape's Messenger are among the popular GUI user agents for email. There are
also many text-based email user interfacesin the public domain, including mail, pine and elm.
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Mail serversform the core of the e-mail infrastructure. Each recipient, such as Bob, has a mailbox located in one of the mail
servers. Bob's mailbox manages and maintains the messages that have been sent to him. A typical message startsitsjourney in
the sender's user agent, travels to the sender's mail server, and then travels to the recipient's mail server, whereit is deposited in
the recipient's mailbox. When Bob wants to access the messages in his mailbox, the mail server containing the mailbox
authenticates Bob (with user names and passwords). Alice's mail server must also deal with failuresin Bob's mail server. If
Alice's server cannot deliver mail to Bob's server, Alice's server holds the message in a message queue and attempts to transfer
the message later. Reattempts are often done every 30 minutes or so; if there is no success after several days, the server
removes the message and notifies the sender (Alice) with an email message.

The Simple Mail Transfer Protocol (SMTP) is the principle application-layer protocol for Internet electronic mail. It uses the
reliable data transfer service of TCP to transfer mail from the sender's mail server to the recipient's mail server. As with most
application-layer protocols, SMTP has two sides: a client side which executes on the sender's mail server, and server side
which executes on the recipient's mail server. Both the client and server sides of SMTP run on every mail server. When amail
server sends mail (to other mail servers), it acts asan SMTP client. When amail server receives mail (from other mail servers)
it actsasan SMTP server.

2.4.1 SMTP

SMTP, defined in [RFC 821], is at the heart of Internet electronic mail. As mentioned above, SMTP transfers messages from
senders mail serversto the recipients mail servers. SMTP is much older than HTTP. (The SMTP RFC dates back to 1982, and
SMTP was around long before that.) Although SMTP has numerous wonderful qualities, as evidenced by its ubiquity in the
Internet, it is nevertheless alegacy technology that possesses certain "archaic" characteristics. For example, it restricts the
body (not just the headers) of all mail messages to be in simple seven-bit ASCII. Thisrestriction was not bothersome in the
early 1980s when transmission capacity was scarce and no one was emailing large attachments or large image, audio or video
files. But today, in the multimedia era, the seven-bit ASCI| restriction is abit of apain -- it requires binary multimedia data to
be encoded to ASCI I before being sent over SMTP; and it requires the corresponding ASCII message to be decoded back to
binary after SMTP transport. Recall from Section 2.3 that HT TP does not require multimedia data to be ASCII encoded before
transfer.

To illustrate the basic operation of SMTP, let's walk through a common scenario. Suppose Alice wants to send Bob asimple
ASCII message:

. Aliceinvokes her user agent for email, provides Bob's email address (e.g., bob@someschool .edu), composes a message
and instructs the user agent to send the message.

. Alice's user agent sends the message her mail server, where it is placed in a message queue.

. Theclient side of SMTP, running on Alice's mail server, sees the message in the message queue. It opensa TCP
connection to a SMTP server, running on Bob's mail server.

. After someinitial SMTP handshaking, the SMTP client sends Alice's message into the TCP connection.

. At Bob'smail server host, the server side of SMTP receives the message. Bob's mail server then places the message in
Bob's mailbox.

. Bobinvokes his user agent to read the message at his convenience.

The scenario is summarized in the Figure 2.4-2.
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Figure 2.4-2: Alice's mail server transfers Alice's message to Bob's mail server.

It isimportant to observe that SMTP does not use intermediate mail servers for sending mail, even when the two mail servers
are |located at opposite ends of the world. If Alice's server isin Hong Kong and Bob's server isin Mobile, Alabama, the TCP
"connection” is adirect connection between the Hong Kong and Mobile servers. In particular, if Bob's mail server isdown, the
message remainsin Alice's mail server and waits for a new attempt -- the message does not get placed in some intermediate
mail server.

Let's now take a closer look at how SMTP transfers a message from a sending mail server to areceiving mail server. We will
see that the SMTP protocol has many similarities with protocols that are used for face-to-face human interaction. First, the
client SMTP (running on the sending mail server host) has TCP establish a connection on port 25 to the server SMTP (running
on the receiving mail server host). If the server is down, the client tries again later. Once this connection is established, the
server and client perform some application-layer handshaking. Just as humans often introduce themselves before transferring
information from one to another, SM TP clients and servers introduce themselves before transferring information. During this
SMTP handshaking phase, the SMTP client indicates the email address of the sender (the person who generated the message)
and the email address of the recipient. Once the SMTP client and server have introduced themselves to each other, the client
sends the message. SMTP can count on the reliable data transfer service of TCP to get the message to the server without errors.
The client then repeats this process over the same TCP connection if it has other messages to send to the server; otherwise, it
instructs TCP to close the connection.

Let ustake alook at an example transcript between client (C) and server (S). The host name of the client is crepes.fr and the
host name of the server is hamburger.edu. The ASCII text prefaced with C: are exactly the lines the client sendsinto its TCP
socket; and the ASCI| text prefaced with S: are exactly the lines the server sends into its TCP socket. The following transcript
begins as soon as the TCP connection is established:

Do you |i ke ketchup?
How about pi ckl es?

S. 220 hanbur ger. edu

C: HELO crepes.fr

S. 250 Hello crepes.fr, pleased to neet you
C: MAIL FROM <alice@repes.fr>

S. 250 alice@repes.fr... Sender ok

C: RCPT TO <bob@anbur ger. edu>

S: 250 bob@anburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself
C:

C:

C: .
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S. 250 Message accepted for delivery
C: QUT

S: 221 hanburger. edu cl osing connection

In the above example, the client sends a message (Do you like ketchup? How about pickles?') from mail server crepes.fr to
mail server hamburger.edu. The client issued five commands: HEL O (an abbreviation for HELLO), MAI L FROM RCPT

TO, DATA, and QUI T. These commands are self explanatory. The server issues replies to each command, with each reply
having areply code and some (optional) English-language explanation. We mention here that SMTP uses persistent
connections: if the sending mail server has several messages to send to the same receiving mail server, it can send all of the
messages over the same TCP connection. For each message, the client begins the process with anew HELO cr epes. fr and

only issues QUI T after all messages have been sent.

It is highly recommended that you use Telnet to carry out adirect dialogue with an SMTP server. To do this, issuet el net
server Nanme 25 .When you do this, you are simply establishing a TCP connection between your local host and the mail
server. After typing thisline, you should immediately receive the 220 reply from the server. Then issue the SMTP commands

HELO, MAIL FROM RCPT TO, DATA, and QUI T atthe appropriate times. If you Telnet into your friend's SMTP
server, you should be able to send mail to your friend in this manner (i.e., without using your mail user agent).

Comparison with HTTP

Let us now briefly compare SMTP to HTTP. Both protocols are used to transfer files from one host to another; HTTP transfers
files (or objects) from Web server to Web user agent (i.e., the browser); SMTP transfersfiles (i.e., email messages) from one
mail server to another mail server. When transferring the files, both persistent HTTP and SMTP use persistent connections, that
is, they can send multiple files over the same TCP connection. Thus the two protocols have common characteristics. However,
there are important differences. First, HTTPis principally apull protocol -- someone loads information on a Web server and
users use HTTP to pull the information off the server at their convenience. In particular, the TCP connection isinitiated by the
machine that wants to receive the file. On the other hand, SMTP is primarily a push protocol -- the sending mail server pushes
the file to the receiving mail server. In particular, the TCP connection isinitiated by the machine that wants to send the file.

A second important difference, which we alluded to earlier, isthat SMTP requires each message, including the body of each
message, to be in seven-bit ASCII format. Furthermore, the SMTP RFC requires the body of every message to end with aline
consisting of only a period -- i.e., in ASCII jargon, the body of each message ends with "CRLF. CRLF", where CR and LF
stand for carriage return and line feed, respectively. In this manner, while the SMTP server is receiving a series of messages
from an SMTP client over a persistent TCP connection, the server can delineate the messages by searching for "CRLF. CRLF"
in the byte stream. (This operation of searching through a character stream is referred to as"parsing”.) Now suppose that the
body of one of the messagesisnot ASCII text but instead binary data (for example, a JPEG image). It is possible that this
binary data might accidentally have the bit pattern associated with ASCII representation of "CR LF . CR LF" in the middle of
the bit stream. This would cause the SMTP server to incorrectly conclude that the message has terminated. To get around this
and related problems, binary datais first encoded to ASCII in such away that certain ASCII characters (including ".") are not
used. Returning to our comparison with HTTP, we note that neither non-persistent nor persistent HTTP has to bother with the
ASCII conversion. For non-persistent HTTP, each TCP connection transfers exactly one object; when the server closes the
connection, the client knows it has received one entire response message. For persistent HTTP, each response message
includesa Cont ent - | engt h: header line, enabling the client to delineate the end of each message.

A third important difference concerns how a document consisting of text and images (along with possibly other mediatypes) is
handled. Aswe learned in Section 2.3, HT TP encapsul ates each object in its own HT TP response message. Internet mail, as we
shall discussin greater detail below, places al of the message's objects into one message.

2.4.2 Mail Message Formats and MIME
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When Alice sends an ordinary snail-mail letter to Bob, she puts the letter into an envelope, on which thereis al kinds of
peripheral information such as Bob's address, Alice's return address, and the date (supplied by the postal service). Similarly,
when an email message is sent from one person to another, a header containing peripheral information proceeds the body of the
message itself. This peripheral information is contained in a series of header lines, which are defined in [RFC 822]. The header

lines and the body of message are separated by ablank line (i.e., by CRLF). RFC 822 specifies the exact format for mail header

lines as well their semantic interpretations. Aswith HTTP, each header line contains readable text, consisting of a keyword
followed by a colon followed by avalue. Some of the keywords are required and others are optional. Every header must have a
From header lineand aTo: header line; aheader may include a Subj ect : header line as well as other optional header

lines. It isimportant to note that these header lines are different from the SMTP commands we studied in section 2.4.1 (even
though they contain some common words such as "from" and "to"). The commands in section 2.4.1 were part of the SMTP
handshaking protocol; the header lines examined in this section are part of the mail message itself.

A typical message header looks like this:

From alice@repes.fr
To: bob@anbur ger. edu
Subj ect: Searching for the neaning of life.

After the message header, a blank line follows then the message body (in ASCII) follows. The message terminates with aline
containing only a period, as discussed above. It is highly recommended that you use Telnet to send to a mail server a message
that contains some header lines, including the Subj ect : header line. To do this, issue t el net server Nane 25.The

actual message is sent into the TCP connection right after the SMTP DATA command. The message consists of the message
headers, the blank line, and the message body. The final line with a single period indicates the end of the message.

The MIME Extension for Non-ASCI| Data

While the message headers described in RFC 822 are satisfactory for sending ordinary ASCII text, they are not sufficiently rich
enough for multimedia messages (e.g., messages with images, audio and video) or for carrying non-ASCI|I text formats (e.g.,
characters used by languages other than English). To send content different from ASCII text, the sending user agent must
include additional headersin the message. These extra headers are defined in [RFC 2045] and [RFC 2046], the MIME

extension to [RFC 822]. Two key MIME headers for supporting multimedia are the Cont ent - Type: header and the
Cont ent - Tr ansf er - Encodi ng: header. The Cont ent - Type: header alows the receiving user agent to take an

appropriate action on the message. For example, by indicating that the message body contains a JPEG image, the receiving user
agent can direct the message body to a JPEG decompression routine. To understand the need of the Cont ent - Tr ansf er -

Encodi ng: header, recall that non-ASCII text messages must be encoded to an ASCII format that isn't going to confuse
SMTP. The Cont ent - Tr ansf er - Encodi ng: header aertsthe receiving user agent that the message body has been

ASCII encoded and the type of encoding used. Thus, when a user agent receives a message with these two headers, it first uses
the value of the Cont ent - Tr ansf er - Encodi ng: header to convert the message body to its original non-ASCII form, and

then usesthe Cont ent - Type: header to determine what actions it should take on the message body.

Let'stake alook at a concrete example. Suppose Alice wants to send Bob a JPEG image. To do this, Alice invokes her user
agent for email, specifies Bob's email address, specifies the subject of the message, and inserts the JPEG image into the
message body of the message. (Depending on the user agent Alice uses, she might insert the image into the message as an
"attachment”.) When Alice finishes composing her message, she clicks on "Send". Alice's user agent then generatesa MIME
message, which might look something like this:

From alice@repes.fr

To: bob@anbur ger. edu
Subj ect: Picture of yumry crepe.
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M ME-Version: 1.0
Cont ent - Tr ansf er - Encodi ng: base64
Cont ent - Type: i mage/ | peg

We observe from the above MIME message that Alice's user agent encoded the JPEG image using base64 encoding. Thisis
one of severa encoding techniques standardized in the MIME [RFC 2045] for conversion to an acceptable seven-bit ASCII
format. Another popular encoding technique is quoted-printable content-transfer-encoding, which is typically used to convert
an ordinary ASCII message to ASCI| text void of undesirable character strings (e.g., aline with asingle period.)

When Bob reads his mail with his user agent, his user agent operates on this same MIME message. When Bob's user agent
observesthe Cont ent - Tr ansf er - Encodi ng: base64 header line, it proceeds to decode the base64-encoded message

body. The message also includesa Cont ent - Type: i mage/ j peg header ling; thisindicates to Bob's user agent that the
message body (after base64 decoding) should be JPEG decompressed. Finally, the message includesthe M ME- Ver si on:

header, which, of course, indicates the MIME version that is being used. Note that the message otherwise follows the standard
RFC 822/SMTP format. In particular, after the message header there is ablank line and then the message body; and after the
message body, thereis aline with asingle period.

Let's now take acloser look at the Cont ent - Type: header. According to the MIME specification, [RFC 2046], this header
has the following format:

Content - Type: type/subtype ; paraneters

where the "parameters’ (along with the semi-colon) is optional. Paraphrasing [RFEC 2046], the Content-Type field is used to
specify the nature of the datain the body of a MIME entity, by giving mediatype and subtype names. After the type and
subtype names, the remainder of the header field is a set of parameters. In general, the top-level type is used to declare the
general type of data, while the subtype specifies a specific format for that type of data. The parameters are modifiers of the
subtype, and as such do not fundamentally affect the nature of the content. The set of meaningful parameters depends on the
type and subtype. Most parameters are associated with a single specific subtype. MIME has been carefully designed to be
extensible, and it is expected that the set of media type/subtype pairs and their associated parameters will grow significantly
over time. In order to ensure that the set of such types/subtypesis developed in an orderly, well-specified, and public manner,
MIME sets up aregistration process which uses the Internet Assigned Numbers Authority (IANA) as a central registry for
MIME's various areas of extensibility. The registration process for these areas is described in [RFC 2048].

Currently there are seven top-level types defined. For each type, thereisalist of associated subtypes, and the lists of subtypes
are growing every year. We describe five of these types below:

. text: Thetext typeisused to indicate to the receiving user agent that the message body contains textual information.
One extremely common type/subtype pair is text/plain. The subtype plain indicates plain text containing no formatting
commands or directives. Plain text isto be displayed asis; no specia softwareis required to get the full meaning of the
text, aside from support for the indicated character set. If you take a glance at the MIME headers in some of the
messages in your mailbox, you will aimost certainly see content type header lineswitht ext / pl ai n;
charset =us-ascii ortext/plain; charset="1S0O 8859-1". The parametersindicate the character set

used to generate the message. Another type/subtype pair that is gaining popularity is text/html. The html subtype
indicates to the mail reader that it should interpret the embedded HTML tags that are included in the message. This
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allows the receiving user agent to display the message as a Web page, which might include a variety of fonts,
hyperlinks, applets, etc.

. Image: Theimagetypeis used to indicate to the receiving user agent that the message body is an image. Two popular
type/subtype pairs are image/gif and image/jpeg. When the receiving user agent encounters image/gif, it knows that it
should decode the GIF image and then display it.

. audio: Theaudio type requires an audio output device (such as a speaker or atelephone) to render the contents. Some
of the standardized subtypes include basic (basic 8-bit mu-law encoded) and 32kadpcm (a 32 Kbps format defined in
[REC 1911]).

. Vvideo: The video type includes mpeg, and quicktime for subtypes.

. application: The application type isfor data that does not fit in any of the other categories. It is often used for data that
must be processed by an application beforeit is viewable or usable by a user. For example, when a user attaches a
Microsoft Word document to an email message, the sending user agent typically uses application/msword for the type/
subtype pair. When the receiving user agent observes the content type application/msword, it launches the Microsoft
Word application and passes the body of the MIME message to the application. A particularly important subtype for the
application type is octet-stream, which is used to indicate that the body contains arbitrary binary data. Upon receiving
thistype, amail reader will prompt the user, providing the option to save to the message to disk for later processing.

Thereis one MIME type that is particularly important and requires special discussion, namely, the multipart type. Just asa
Web page can contain many objects (text, images, applets, etc.), so can an email message. Recall that the Web sends each of
the objects within independent HT TP response messages. Internet email, on the other hand, places al the objects (or "parts’) in
the same message. In particular, when a multimedia message contains more than one object (such as multiple images or some
ASCII text and some images) the message typically has Cont ent -t ype: rmul ti part/ m xed. This content type header

line indicates to the receiving user agent that the message contains multiple objects. With all the objects in the same message,
the receiving user agent needs a means to determine (i) where each object begins and ends, (ii) how each non-ASCII object
was transfer encoded, and (iii) the content type of each message. Thisis done by placing boundary characters between each
object and preceding each object in the message with Cont ent -t ype: and Cont ent - Tr ansf er - Encodi ng: header
lines.

To obtain a better understanding of multipart/mixed, let's look at an example. Suppose that Alice wants to send a message to
Bob consisting of some ASCII text, followed by a JPEG image, followed by more ASCII text. Using her user agent, Alice
types some text, attaches a JPEG image, and then types some more text. Her user agent then generates a message something
likethis:

From alice@repes.fr
To: bob@anbur ger. edu
Subj ect: Picture of yumy crepe with conmentary
M ME-Version: 1.0
Content-Type: nultipart/ m xed; Boundar y=St art O Next Par t
--Start O Next Part
Dear Bob,
Pl ease find a picture of an absolutely scrunptious crepe.

--Start O Next Part
Cont ent - Tr ansf er - Encodi ng: base64
Cont ent - Type: i mage/ | peg
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--Start O Next Part
Let me know if you would |ike the recipe.

Examining the above message, we note that the Cont ent - Type: linein the header indicates how the various partsin the
message are separated. The separation always begins with two dashes and ends with CRLF.

As mentioned earlier, the list of registered MIME types grows every year. The RFC [2048] describes the registration
procedures which use the Internet Assigned Numbers Authority (IANA) as a central registry for such values. A list of the
current MIME subtypes is maintained at numerous sites. The reader is aso encouraged to glance at Y ahoo's MIME Category

Page.

The Received M essage

Aswe have discussed, an email message consists of many components. The core of the message is the message body, whichis
the actually data being sent from sender to receiver. For a multipart message, the message body itself consists of many parts,
with each part preceded with one or more lines of peripheral information. Preceding the message body is a blank line and then
anumber of header lines. These header linesinclude RFC 822 header linessuchasFrom , To: and Subj ect : header
lines. The header lines also include MIME header lines such as Cont ent -t ype: and Cont ent -t r ansf er -

encodi ng: header lines. But we would be remissif we didn't mention another class of header lines that are inserted by the
SMTP receiving server. Indeed, the receiving server, upon receiving a message with RFC 822 and MIME header lines,
appendsaRecei ved: header lineto the top of the message; this header line specifies the name of the SMTP server that sent
the message ("from"), the name of the SMTP server that received the message ("by") and the time at which the receiving server
received the message. Thus the message seen by the destination user takes the following form:

Recei ved: fromcrepes.fr by hanburger.edu ; 12 Cct 98 15:27:39 GV
From alice@repes.fr

To: bob@anbur ger. edu

Subj ect: Picture of yummy crepe.

M ME-Version: 1.0

Cont ent - Tr ansf er - Encodi ng: base64

Cont ent - Type: i mage/ | peg

Almost everyone who has used electronic mail has seen the Recei ved: header line (along with the other header lines)
preceding email messages. (Thisline is often directly seen on the screen or when the message is sent to a printer.) Y ou may
have noticed that a single message sometimes has multiple Recei ved: header lines and a more complex Ret ur n- Pat h:
header line. Thisis because a message may be received by more than one SMTP server in the path between sender and
recipient. For example, if Bob hasinstructed his email server hamburger.edu to forward all his messages to sushi.jp, then the
message read by Bob's user agent would begin with something like:

Recei ved: from hanburger.edu by sushi.jp; 12 Oct 98 15:30: 01 GV
Recei ved: fromcrepes.fr by hanburger.edu ; 12 Cct 98 15:27:39 GV

These header lines provide the receiving user agent atrace of the SMTP serversvisited as well as timestamps of when the visits
occurred. Y ou can learn more about the syntax of these header linesin the SMTP RFC, which is one of the more readabl e of
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the many RFCs.

2.4.3 Mail Access Protocols

Once SMTP delivers the message from Alice's mail server to Bob's mail server, the message is placed in Bob's mailbox.
Throughout this discussion we have tacitly assumed that Bob reads his mail by logging onto the server host (most likely
through Telnet) and then executes a mail reader (e.g., mail, elm, etc.) on that host. Up until the early 1990s this was the
standard way of doing things. But today atypical user reads mail with a user agent that executes on his or her local PC (or
Mac), whether that PC be an office PC, ahome PC, or a portable PC. By executing the user agent on alocal PC, users enjoy a
rich set of features, including the ability to view multimedia messages and attachments. Popular mail user agents that run on
local PCsinclude Eudora, Microsoft's Outlook Express, and Netscape's Messenger.

Given that Bob (the recipient) executes his user agent on the hislocal PC, it is natural to consider placing amail server on the
hislocal PC aswell. Thereis a problem with this approach, however. Recall that a mail server manages mailboxes and runs the
client and server sides of SMTP. If Bob's mail server were to reside on hislocal PC, then Bob's PC would have to remain
constantly on, and connected to the Internet, in order to receive new mail, which can arrive at any time. Thisisimpractical for
the great mgjority of Internet users. Instead, atypical user runs a user agent on the local PC but accesses a mailbox from a
shared mail server - amail server that is aways running, that is always connected to the Internet, and that is shared with other
users. The mail server istypically maintained by the user's ISP, which could be aresidential or an institutional (university,
company, etc.) ISP.

With user agents running on users local PCs and mail servers hosted by |SPs, a protocol is needed to allow the user agent and
the mail server to communicate. Let usfirst consider how a message that originates at Alice'slocal PC makes its way to Bob's
SMTP mail server. Thistask could simply be done by having Alice's user agent communicate directly with Bob's mail server
in the language of SMTP: Alice's user agent would initiate a TCP connection to Bob's mail server, issue the SMTP
handshaking commands, upload the message with the DATA command, and then close the connection. This approach, although
perfectly feasible, is not commonly employed, primarily because it doesn't offer the Alice any recourse to a crashed destination
mail server. Instead, Alice's user agent initiates a SM TP dialogue with her own mail server (rather than with the recipient's
mail server) and uploads the message. Alice's mail server then establishes anew SMTP session with Bob's mail server and
relays the message to Bob's mail server. If Bob's mail server is down, then Alice's mail server holds the message and tries again
later. The SMTP RFC defines how the SM TP commands can be used to relay a message across multiple SMTP servers.

But there is still one missing piece to the puzzle! How does arecipient like Bob, running a user agent on hislocal PC, obtain
his messages, which are sitting on a mail server within Bob's ISP? The puzzle is completed by introducing a special access
protocol that transfers the messages from Bob's mail server to the local PC. There are currently two popular mail access
protocols: POP3 (Post Office Protocol - Version 3) and IMAP (Internet Mail Access Protocol). We shall discuss both of these
protocols below. Note that Bob's user agent can't use SM TP to obtain the messages. obtaining the messagesis a pull operation
whereas SMTP is a push protocol. Figure 2.4-3 provides a summary of the protocols that are used for Internet mail: SMTPis
used to transfer mail from the sender's mail server to the recipient's mail server; SMTPis also used to transfer mail from the
sender's user agent to the sender's mail server. POP3 or IMAP are used to transfer mail from the recipient's mail server to the
recipient's user agent.
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POP3
or
SMTP SMTP — IMAP
sender's I recepient's
mail server mail server
sender's recepient's
user agent user agent

Figure 2.4-3: E-mail protocols and their communicating entities.
POPS3

POPS3, defined in [RFC 1939], is an extremely simple mail access protocol. Because the protocol is so simple, its functionality
israther limited. POP3 begins when the user agent (the client) opens a TCP connection to the the mail server (the server) on
port 110. With the TCP connection established, POP3 progresses through three phases: authorization, transaction and update.
During the first phase, authorization, the user agent sends a user name and a password to authenticate the user downloading the
mail. During the second phase, transaction, the user agent retrieves messages. During the transaction phase, the user agent can
also mark messages for deletion, remove deletion marks, and obtain mail statistics. The third phase, update, occurs after the
client hasissued the qui t command ending the POP3 session; at this time, the mail server deletes the messages that were

marked for deletion.

In a POP3 transaction, the user agent issues commands, and the server responds to each command with areply. There are two
possible responses. +OK (sometimes followed by server-to-client data), whereby the server is saying that the previous

command was fine; and - ERR, whereby the server is saying that something was wrong with the previous command.

The authorization phase has two principle commands: user <user name> and pass<password>. To illustrate these two

commands, we suggest that you Telnet directly into a POP3 server, using port 110, and issue these commands. Suppose that
mai | Ser ver isthe name of your mail server. You will see something like:

tel net mail Server 110

+OK POP3 server ready

user alice

+K

pass hungry

+OK user successfully | ogged on

If you misspell acommand, the POP3 server will reply with an - ERR message.

Now let's take alook at the transaction phase. A user agent using POP3 can often be configured (by the user) to "download and
delete” or to "download and keep". The sequence of commands issued by a POP3 user agent depend on which of these two
modes the user agent is operating in. In the download-and-delete mode, the user agent will issuethel i st,retr anddel e

commands. As an example, suppose the user has two messagesin his or her mailbox. In the dialogue below C: (standing for
client) isthe user agent and S: (standing for server) isthe mail server. The transaction will ook something like:

list
498

C
S 1

S. 2 912
S
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C retr 1
S: blah blah ...
S
S blah
S .

C. dele 1
C retr 2
S: blah blah ...
S
S blah
S .

C.dele 2
Cquit

S: +OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored messages. The user agent then retrieves and deletes
each message from the server. Note that after the authorization phase, the user agent employed only four commands: | i st ,

retr,del e,andqui t. Thesyntax for these commandsis defined in RFC 1939]. After issuing the quit command, the
POPS3 server enters the update phase and removes messages 1 and 2 from the mailbox.

A problem with this downl oad-and-delete mode is that the recipient, Bob, may be nomadic and want to access his mail from
multiple machines, including the office PC, the home PC and a portable computer. The downl oad-and-delete mode scatters
Bob's mail over al the local machines; in particular, if Bob first reads a message on a home PC, he will not be able to reread
the message on his portable later in the evening. In the download-and-keep mode, the user agent leaves the messages on the
mail server after downloading them. In this case, Bob can reread messages from different machines; he can access a message
from work, and then access it again later in the week from home.

During a POP3 session between a user agent the mail server, the POP3 server maintains some state information; in particular, it
keeps track of which messages have been marked deleted. However, the POP3 server is not required to carry state information
across POP3 sessions. For example, no message is marked for deletion at the beginning of each session. Thislack of state
information across sessions greatly simplifies the implementation of a POP3 server.

IMAP

Once Bob has downloaded his messages to the local machine using POP3, he can create mail folders and move the downloaded
messages into the folders. Bob can then del ete messages, move messages across folders, and search for messages (say by
sender name or subject). But this paradigm -- folders and messages in the local machine -- poses a problem for the nomadic
user, who would prefer to maintain afolder hierarchy on aremote server that can be accessed by from any computer. Thisis
not possible with POP3.

To solve this and other problems, the Internet Mail Access Protocol (IMAP), defined in [RFC 1730], was invented. Like POP3,
IMAP isamail access protocol. It has many more features than POP3, but it is aso significantly more complex. (And thus the
client and server side implementations are significantly more complex.) IMAP is designed to allow users to manipulate remote
mailboxes as if they werelocal. In particular, IMAP enables Bob to create and maintain multiple message folders at the mail
server. Bob can put messages in folders and move messages from one folder to another. IMAP aso provides commands that
allow Bob to search remote folders for messages matching specific criteria. One reason why an IMAP implementation is much
more complicated than a POP3 implementation is that the IMAP server must maintain afolder hierarchy for each of its users.
This state information persists across a particular user's successive accesses to the IMAP server. Recall that a POP3 server, by
contrast, does not maintain anything about a particular user once the user quits the POP3 session.

Another important feature of IMAP isthat it has commands that permit a user agent to obtain components of messages. For
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example, a user agent can obtain just the message header of a message or just one part of a multipart MIME message. This
feature is useful when there is alow-bandwidth connection between the user agent and its mail server, for example, awireless
or slow-speed modem connection. With a low-bandwidth connection, the user may not want to download all the messagesin its
mailbox, particularly avoiding long messages that might contain, for example, an audio or video clip.

An IMAP session consists of the establishment of a connection between the client (i.e., the user agent) and the IMAP server, an
initial greeting from the server, and client-server interactions. The client/server interactions are similar to, but richer than, those
of POP3. They consist of a client command, server data, and a server completion result response. The IMAP server isawaysin
one of four states. In the non-authenticated state, which starts when the connection starts, the user must supply a user name and
password before most commands will be permitted. In the authenticated state, the user must select afolder before sending
commands that affect messages. In the selected state, the user can issue commands that affect messages (retrieve, move, delete,
retrieve a part in amultipart message, etc.). Finally, the logout state is when the session is being terminated. The IMAP
commands are organized by the state in which the command is permitted. Y ou can read all about IMAP at the official IMAP
site.

HTTP

More and more users today are using browser-based email services such as Hotmail or Yahoo! Mail. With these servers, the
user agent is an ordinary Web browser and the user communicates with its mailbox on its mailserver viaHTTP. When a
recipient, such as Bob, wants to access the messages in his mailbox, the messages are sent from Bob's mail server to Bob's
browser using the HTTP protocol rather than the POP3 or IMAP protocol. When a sender with an account on an HTTP-based
email server, such as Alice, wants to send a message, the message is sent from her browser to her mail server over HTTP rather
than over SMTP. The mail server, however, still sends messages to, and receives messages from, other mail servers using
SMTP. This solution to mail accessis enormously convenient for the user on the go. The user need only to be able to accessa
browser in order to send and receive messages. The browser can bein an Internet cafe, in afriend's house, in a hotel room with
aWeb TV, etc. Aswith IMAP, users can organize their messages in a hierarchy of folders on the remote server. In fact, Web-
based email is so convenient that it may replace POP3 and IMAP access in the upcoming years. Its principle disadvantage is
that it can be slow, as the server istypicaly far from the client and interaction with the server is done through CGI scripts.

2.4.4 Continuous Media Email

Continuous-media (CM) email is email that includes audio or video. CM email is appealing for asynchronous communication
among friends and family. For example, a young child who cannot type would prefer sending an audio message to his or her
grandparents. Furthermore, CM email can be desirable in many corporate contexts, as an office worker may be able to record a
CM message more quickly than typing a text message. (English can be spoken at arate of 180 words per minute, whereas the
average office worker types words at a much slower rate.) Continuous-media e-mail resembles in some respects ordinary voice-
mail messaging in the telephone system. However, continuous-media e-mail is much more powerful. Not only does it provide
the user with agraphical interface to the user's mailbox, but it also allows the user to annotate and reply to CM messages and to
forward CM messages to alarge number of recipients.

CM e-mail differs from traditional text mail in many ways. These differences include much larger messages, more stringent
end-to-end delay requirements, and greater sensitivity to recipients with highly heterogeneous Internet access rates and local
storage capabilities. Unfortunately, the current e-mail infrastructure has several inadequacies that obstruct the widespread
adoption of CM e-mail. First, many existing mail servers do not have the capacity to store large CM objects; recipient mail
serverstypicaly reject such messages, which makes sending CM messages to such recipients impossible. Second, the existing
mail paradigm of transporting entire messages to the recipient's mail server before recipient rendering can lead to excessive
waste of bandwidth and storage. Indeed, stored CM is often not rendered in its entirety [Padhye 1999], so that bandwidth and
recipient storage is wasted by receiving data that is never rendered. (For example, one can imagine listening to the first fifteen
seconds of along audio email from arather long-winded colleague, and then deciding to delete the remaining 20 minutes of the
message without listening to it.) Third, current mail access protocols (POP3, IMAP and HTTP) are inappropriate for streaming
CM to recipients. (Streaming CM is discussed in detail in Chapter 6.) In particular, the current mail access protocols do not
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provide functionality that allows a user to pause/resume a message or to reposition within a message; furthermore, streaming
over TCP is often leads to poor reception (see Chapter 6). These inadequacies will hopefully be addressed in the upcoming
years. Possible solutions are discussed in [Gay 1997] [Hess 1998] [Shurman 1996] and [Turner 1999].

References
In addition to the references below, areadable but detailed, overview of modern electronic mail is given in [Hughes 1998].

[Gay 1997] V. Gay and B. Dervella, "MHEGAM - A Multimedia Messaging System," |EEE Multimedia Magazine, Oct-Dec.
1997, pp. 22-29.

[Hess 1998] C. Hess, D. Lin and K. Nahrstedt, "VistaMail: An Integrated Multimedia Mailing System," |[EEE Multimedia
Magazine, Oct.-Dec, 1988, pp. 13-23.

[Hughes 1998] L. Hughes, Internet E-mail: Protocols, Standards and I mplementation, Artech House, Norwood, MA, 1998.
[Padhye 1999] J. Padhye and J. Kurose, "An Empirical Study of Client Interactions with a Continuous-Media Courseware
Server," |EEE Internet Computing, April 1999.

[RFC 821] J.B. Postel, "Simple Mail Transfer Protocol,” [RFC 821], August 1982.

[RFC 822] D.H. Crocker, "Standard for the Format of ARPA Internet Text Messages," [RFC 822], August 1982.

[RFC 977] B. Kantor and P. Lapsley, "Network News Transfer Protocol,” [RFC 977], February 1986.

[RFC 1730] M. Crispin, "Internet Message Access Protocol - Version 4," [RFC 1730], December 1994.

[RFC 1911] G. Vaudreuil, "Voice Profil for Internet Mail,” [RFC 1911], February 1996.

[RFC 1939] J. Myers and M. Rose, "Post Office Protocol - Version 3," [REC 1939], May 1996.

[RFC 2045] N. Borenstein and N. Freed, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies," [RFC 2045], November 1996.

[RFC 2046] N. Borenstein and N. Freed, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types," [RFC
2046], November 1996.

[RFC 2048] N. Freed, J. Klensin and J. Postel "Multipurpose Internet Mail Extensions (MIME) Part Four: Registration
Procedures,” [RFC 2048], November 1996.

[Schurmann 1996] G. Schurmann, "Multimedia Mail,” Multimedia Systems, ACM Press, Oct. 1996, pp. 281-295.

[Turner 1999] D.A. Turner and K.W. Ross, "Continuous-Media Internet E-Mail: Infrastructure Inadequacies and Solutions,
http://www.eurecom.fr/~rosMMNetL ab.htm

Search RFCs and Internet Drafts

If you areinterested in an Internet Draft relating to a certain subject or protocol enter the keyword(s) here.

Query:

Press button to submit your query or reset the form: |_Submit || Reset

Query Options:

[2] Case insensitive

Maximum number of hits; | 25

file:///D|/Downl oads/L ivros/computacéo/ Computer%20Ne...own%20A pproach%20Featuring%20the%20I nternet/smtp.htm (13 of 14)20/11/2004 15:51:55


file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#27
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#28
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc977.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc1730.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc1911.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc1939.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2045.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2046.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2046.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2048.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/MMNetLab.htm

Keith\book\applications\smtp

Return to Table Of Contents

Copyright Keith W. Ross and James F. Kurose 1996-2000. All rights reserved.

file:///D|/Downl oads/L ivros/computacéo/ Computer%20Ne...own%20A pproach%20Featuring%20the%20I nternet/smtp.htm (14 of 14)20/11/2004 15:51:55



The Domain Name System

2.5 DNS - The Internet's Directory Service

We human beings can be identified in many ways. For example, we can be identified by the names that appear on our birth
certificates. We can be identified by our socia security numbers. We can be identified by our driver's license numbers.
Although each of these identifiers can be used to identify people, within a given context, one identifier may be more
appropriate than an other. For example, the computers at the IRS (the infamous tax collecting agency in the US) prefer to use
fixed-length socia security numbers rather than birth-certificate names. On the other hand, ordinary people prefer the more
mnemonic birth-certificate names rather than social security numbers. (Indeed, can you imagine saying, "Hi. My nameis 132-
67-9875. Please meet my husband, 178-87-1146.")

Just as humans can be identified in many ways, so too can Internet hosts. One identifier for ahost isits hostname. Hostnames
-- such as cnn.com, www.yahoo.com, gaia.cs.umass.edu and surf.eurecom.fr -- are mnemonic and are therefore appreciated
by humans. However, hostnames provide little, if any, information about the location within the Internet of the host. (A
hostname such as surf.eurecom.fr, which ends with the country code .fr, tells us that the host isin France, but doesn't say
much more.) Furthermore, because hosthames can consist of variable-length a pha-numeric characters, they would be difficult
to process by routers. For these reasons, hosts are also identified by so-called | P addr esses. We will discuss IP addressesin
some detail in Chapter 4, but it is useful to say afew brief words about them now. An P address consists of four bytes and
has arigid hierarchical structure. An IP address |ooks like 121.7.106.83, where each period separates one of the bytes
expressed in decimal notation from 0 to 127. An IP address is hierarchical because as we scan the address from |eft to right,
we obtain more and more specific information about where (i.e., within which network, in the network of networks) the host
islocated in the Internet. (Just as when we scan a postal address from bottom to top we obtain more and more specific
information about where the residence is located). An IP addressisincluded in the header of each 1P datagram, and Internet
routers use this | P address to route s datagram towards its destination.

2.5.1 Services Provided by DNS

We have just seen that there are two ways to identify a host -- a hostname and an I P address. People prefer the more
mnemonic hostname identifier, while routers prefer fixed-length, hierarchically-structured |P addresses. In order to reconcile
these different preferences, we need a directory service that trand ates hosthames to | P addresses. Thisis the main task of the
the Internet's Domain Name System (DNS). The DNSis (i) adistributed database implemented in a hierarchy of name
serversand (ii) an application-layer protocol that allows hosts and name servers to communicate in order to provide the
translation service. Name servers are usually Unix machines running the Berkeley Internet Name Domain (BIND) software.
The DNS protocol runs over UDP and uses port 53. Following this chapter we provide interactive links to DNS programs that

allow you to translate arbitrary hostnames, among other things.

DNS is commonly employed by other application-layer protocols -- including HTTP, SMTP and FTP - to translate user-
supplied host namesto IP addresses. As an example, consider what happens when a browser (i.e., an HTTP client), running
on some user's machine, requests the URL www.someschool.edu/index.html. In order for the user's machine to be able to send
an HTTP request message to the Web server www.someschool.edu, the user's machine must obtain the | P address of www.
someschool.edu. Thisis done as follows. The same user machine runs the client-side of the DNS application. The browser
extracts the hostname, www.someschool .edu, from the URL and passes the hostname to the client-side of the DNS
application. As part of a DNS query message, the DNS client sends a query containing the hostname to a DNS server. The
DNS client eventually receives areply, which includes the IP address for the hostname. The browser then opensa TCP
connection to the HTTP server process |located at that 1P address. All IP datagrams sent to from the client to server as part of
this connection will include this I P address in the destination address field of the datagrams. In particular, the | P datagram(s)
that encapsulate the HT TP request message use this | P address. We see from this example that DNS adds an additional delay
-- sometimes substantial -- to the Internet applications that use DNS. Fortunately, as we shall discuss below, the desired |P
address is often cached in a"near by" DNS name server, which helps to reduce the DNS network traffic as well as the average
DNSdelay.
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LikeHTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since (i) it runs between communicating end
systems (again using the client-server paradigm), and (ii) it relies on an underlying end-to-end transport protocol (i.e., UDP)
to transfer DNS messages between communicating end systems. In another sense, however, the role of the DNSis quite
different from Web, file transfer, and email applications. Unlike these applications, the DNS is not an application with which
auser directly interacts. Instead, the DNS provides a core Internet function -- namely, translating hostnames to their
underlying | P addresses, for user applications and other software in the Internet. We noted earlier in Section 1.2 that much of
the "complexity" in the Internet architecture islocated at the "edges" of the network. The DNS, which implements the critical
name-to-address tranglation process using clients and servers located at the edge of the network, is yet another example of
that design philosophy.

DNS provides afew other important servicesin addition to translating hostnames to | P addresses:

. Host aliasing: A host with a complicated hosthame can have one or more alias names. For example, a hostname such
as relayl.west-coast.enterprise.com could have, say, two aliases such as enterprise.com and www.enterprise.com. In
this case, the hostname relay 1.west-coast.enterprise.com is said to be canonical hostname. Alias hosthames, when
present, are typically more mnemonic than a canonical hostname. DNS can be invoked by an application to obtain the
canonical hostname for a supplied alias hostname as well as the IP address of the host.

. Mail server aliasing: For obvious reasons, it is highly desirable that email addresses be mnemonic. For example, if
Bob has an account with Hotmail, Bob's email address might be as simple as bob@hotmail.com. However, the
hostname of the Hotmail mail server is more complicated and much less mnemonic than simply hotmail.com (e.g., the
canonical hostname might be something like relayl.west-coast.hotmail.com). DNS can be invoked by a mail
application to obtain the canonical hostname for a supplied aias hostname as well as the | P address of the host. In fact,
DNS permits a company's mail server and Web server to have identical (aliased) hostnames; for example, a company's
Web server and mail server can both be called enterprise.com.

. Load Distribution: Increasingly, DNSis aso being used to perform load distribution among replicated servers, such
asreplicated Web servers. Busy sites, such as cnn.com, are replicated over multiple servers, with each server running
on adifferent end system, and having a different | P address. For replicated Web servers, a set of 1P addressesisthus
associated with one canonical hostname. The DNS database contains this set of 1P addresses. When clients make a
DNS query for a name mapped to a set of addresses, the server responds with the entire set of |1P addresses, but rotates
the ordering of the addresses within each reply. Because aclient typically sendsits HTTP request message to the IP
address that is listed first in the set, DNS rotation distributes the traffic among all the replicated servers. DNS rotation
isalso used for email so that multiple mail servers can have the same alias name.

The DNS s specified in [RFEC 1034] and [RFC 1035], and updated in several additional RFCs. It isacomplex system, and
we only touch upon key aspects of its operation here. The interested reader is referred to these RFCs and the book [Abitz

1993].

2.5.2 Overview of How DNS Works

We now present a high-level overview of how DNSworks. Our discussion shall focus on the hostname to | P address
trandation service. From the client's perspective, the DNSis a black box. The client sends a DNS query message into the
black box, specifying the hostname that needs to be translated to an 1P address. On many Unix-based machines,

get host byname() isthelibrary routine that an application callsin order to issue the query message. In Section 2.7, we
shall present a Java program that begins by issuing a DNS query. After adelay, ranging from milliseconds to tens of seconds,
the client receives a DNS reply message that provides the desired mapping. Thus, from the client's perspective, DNSisa
simple, straightforward translation service. But in fact, the black box that implements the service is complex, consisting of
large number of name servers distributed around the globe, as well as an application-layer protocol that specifies how the
name servers and querying hosts communicate.
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A simple design for DNS would have one Internet name server that contains all the mappings. In this centralized design,
clients smply direct all queriesto the single name server, and the name server responds directly to the querying clients.
Although the simplicity of this design is attractive, it is completely inappropriate for today's Internet, with its vast (and
growing) number of hosts. The problems with a centralized design include:

. A single point of failure. If the name server crashes, so too does the entire Internet!

. Traffic volumes. A single name server would have to handle all DNS queries (for al the HTTP requests, email
messages, etc. generated from millions of hosts)

. Distant centralized database. A single name server cannot be "close" to al the querying clients. If we put the single
name server in New Y ork City, then all queries from Australia must travel to the other side of the globe, perhaps over
slow and congested links. This can lead to significant delays (thereby increasing the "world wide wait" for the Web
and other applications).

. Maintenance. The single name server would have to keep records for all Internet hosts. Not only would this
centralized database be huge, but it would have to be updated frequently to account for every new host. There are also
authentication and authorization problems associated with alowing any user to register a host with the centralized
database.

In summary, a centralized database in a single name server ssimply doesn't scale. Consequently, the DNS is distributed by
design. In fact, the DNSis awonderful example of how a distributed database can be implemented in the Internet.

In order to deal with the issue of scale, the DNS uses a large number of name servers, organized in a hierarchical fashion and
distributed around the world. No one name server has all of the mappings for all of the hosts in the Internet. Instead, the
mappings are distributed across the name servers. To afirst approximation, there are three types of name servers. local name
servers, root name servers, and authoritative name servers. These name servers, again to afirst approximation, interact with
each other and with the querying host as follows:

. Local name servers: Each ISP - such as a university, an academic department, an employee's company or aresidential
ISP - has alocal name server (also called a default name server). When a host issues a DNS query message, the
message isfirst sent to the host'slocal name server. The |P address of the local name server istypically configured
by hand in a host. (On a Windows 95/98 machine, you can find the IP address of the local name server used by your
PC by opening the Control Panel, and then selecting "Network™”, then selecting an installed TCP/IP component, and
then selecting the DNS configuration folder tab.) The local name server istypically "close" to the client; in the case of
an ingtitutional ISP, it may be on the same LAN asthe client host; for aresidentia 1SP, the name server istypically
separated from the client host by no more than afew routers. If a host requests atranglation for another host that is part
of the same local ISP, then the local name server will be able to immediately provide the the requested | P address. For
example, when the host surf.eurecom.fr requests the IP address for baie.eurecom.fr, the local name server at Eurecom
will be able to provide the requested | P address without contacting any other name servers.

. Root name servers: In the Internet there are a dozen or so of "root name servers," most of which are currently located
in North America. A February 1998 map of the root servers isshown in Figure 2.5-1. When alocal name server
cannot immediately satisfy a query from a host (because it does not have arecord for the hosthame being requested),
the local name server behaves asa DNS client and queries one of the root name servers. If the root name server has a
record for the hostname, it sends a DNS reply message to the local name server, and the local name server then sends a
DNS reply to the querying host. But the root name server may not have arecord for the hostname. Instead, the
rootname server knows the IP address of an "authoritative name server” that has the mapping for that particular
hostname.

. Authoritative name servers. Every host is registered with an authoritative name server. Typically, the authoritative
name server for ahost isaname server in the host's local ISP. (Actually, each host is required to have at least two
authoritative name servers, in case of failures.) By definition, a name server is authoritative for ahost if it always has a
DNS record that translates the host's hostname to that host's | P address. When an authoritative name server is queried
by aroot server, the authoritative name server responds with a DNS reply that contains the requested mapping. The
root server then forwards the mapping to the local name server, which in turn forwards the mapping to the requesting
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host. Many name servers act as both local and and authoritative name servers.

DNS Root Servers s

Designation, Responsibility, and Locations

[-NORDU Stockholm
E-NASA Moffet Field CA

F-1SC Woodside CA

M-WIDE Keio

K-LINX/RIPE London

A-NSF-NSI Herndon VA
L C-PSl Herndon VA
D-UMD College Pk MD

G-DISA-Boeing Vienna VA
B-DISA-USC Marina delRey CA H-USArmy Aberdeen MD

L-DISA-USC Marina delRey CA J-NSF-NS| Herndon VA

Figure 2.5-1: A February 1998 map of the DNS root servers. Obtained from the WIA alliance Web site (http://www.wia.org).

Let'stake alook at a simple example. Suppose the host surf.eurecom.fr desires the | P address of gaia.cs.umass.edu. Also
suppose that Eurecom's local name server is called dns.eurecom.fr and that an authoritative name server for gaia.cs.umass.edu
is caled dns.umass.edu. As shown in Figure 2.5-2, the host surf.eurecom.fr first sends a DNS query message to itslocal name
server, dns.eurecom.fr. The query message contains the hostname to be trand ated, namely, gaia.cs.umass.edu. The local name
server forwards the query message to aroot name server. The root name server forwards the query message to the name
server that is authoritative for all the hosts in the domain umass.edu, namely, to dns.umass.edu. The authoritative name server
then sends the desired mapping to the querying host, via the root name server and the local name server. Note that in this
example, in order to obtain the mapping for one hostname, six DNS messages were sent: three query messages and three reply

messages.
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root 3
2 name server
5 4

local authoritative
name server: name server:
dns.eurecom.fr dns.umass.edu

/7 requesting host: y : |
) . gaia.cs.umass.edu |
\ surf.eurecom.fr \

. - . e
~ _ ~—_ _

Figure 2.5-2: Recursive gueries to obtain the mapping for gaia.cs.umass.edu.

Our discussion up to this point has assumed that the root name server knows the | P address of an authoritative name server for
every hostname. This assumption may be incorrect. For a given hostname, the root name server may only know the IP address
of an intermediate name server that in turn knows the | P address of an authoritative name server for the hostname. To
illustrate this, consider once again the above example with the host surf.eurecom.fr querying for the | P address of gaia.cs.
umass.edu. Suppose now that the University of Massachusetts has a name server for the university, called dns.umass.edu.
Also suppose that each of the departments at University of Massachusetts has its own name server, and that each departmental
name server is authoritative for all the hosts in the department. As shown in Figure 2.5-3, when the root name server receives
aquery for a host with hosthame ending with umass.edu it forwards the query to the name server dns.umass.edu. This name
server forwards al queries with hostnames ending with .cs.umass.edu to the name server dns.cs.umass.edu, which is
authoritative for all hostnames ending with .cs.umass.edu. The authoritative name server sends the desired mapping to the
intermediate name server, dns.umass.edu, which forwards the mapping to the root name server, which forwards the mapping
to the local name server, dns.eurecom.fr, which forwards the mapping to the requesting host! 1n this example, eight DNS
messages are sent. Actually, even more DNS messages can be sent in order to trand ate a single hosthame - there can be two
or more intermediate name servers in the chain between the root name server and the authoritative name server!
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root
name server

TN

local intermediate
name server: name server:
dns.eurecom.fr dns.umass.edu
F3 F 3
5 bl
r

authoritative
name server:
dns.cs.umass.edu

requesting host:
surf.eurecom.fr

gaia.cs.umass.edu

Figure 2.5-3: Recursive queries with an intermediate name server between the root and authoritative name servers.

The examples up to this point assumed that all queries are recur sive queries. When a host or name server A makes a
recursive query to a name server B, then name server B obtains the requested mapping on behalf of A and then forwards the
mapping to A. The DNS protocol also alowsfor iterative queries at any step in the chain between requesting host and
authoritative name server. When a name server A makes an iterative query to name server B, if name server B does not have
the requested mapping, it immediately sends a DNS reply to A that contains the I P address of the next name server in the
chain, say, name server C. Name server A then sends a query directly to name server C.

In the sequence of queries that are are required to translate a hostname, some of the queries can be iterative and others
recursive. Such a combination of recursive and iterative queriesisillustrated in Figure 2.5-4. Typically, al queriesin the
query chain are recursive except for the query from the local name server to the root name server, which isiterative. (Because
root servers handle huge volumes of queries, it is preferable to use the less burdensome iterative queries for root servers.)
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root
name server

2 3
local 4 4 intermediate
name server: name server:
dns.eurecom.fr | 5 dns.umass.edu
Fy F3
& i
r
authoritative
1 5 hame server:
dns.cs.umass.edu

requesting host:
surf.eurecom.fr

gaia.cs.umass.edu

Figure 2.5-4: A query chain with recursive and iterative queries.

Our discussion this far has not touched on one important feature of the DNS: DNS caching. In reality, DNS extensively
exploits caching in order to improve the delay performance and to reduce the number of DNS messages in the network. The
ideais very simple. When a name server receives a DNS mapping for some hostname, it caches the mapping in local memory
(disk or RAM) while passing the message along the name server chain. Given a cached hostname/ | Paddress translation pair,
if another query arrivesto the name server for the same hostname, the name server can provide the desired | P address, even if
it is not authoritative for the hostname. In order to deal with the ephemeral hosts, a cached record is discarded after a period of
time (often set to two days). As an example, suppose that surf.eurecom.fr queries the DNS for the | P address for the hostname
cnn.com. Furthermore suppose that a few hours later, another Eurecom host, say baie.eurecom.fr, also queries DNS with the
same hostname. Because of caching, the local name server at Eurecom will be able to immediately return the |P address to the
reguesting host without having to query name servers on another continent. Any name server may cache DNS mappings.

2.5.3 DNS Records

The name servers that together implement the DNS distributed database, store Resour ce Recor ds (RR) for the hostname to
I P address mappings. Each DNS reply message carries one or more resource records. In this and the following subsection, we
provide a brief overview of DNS resource records and messages, more details can be found in [Abitz] or inthe DNS RFCs

[REC 1034] [RFC 1035].

A resource record is afour-tuple that contains the following fields:
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(Narme, Val ue, Type, TTL)
TTL isthetimeto live of the resource record; it determines the time at which a resource should be removed from a cache. In
the example records given below, we will ignore the TTL field. The meaning of Name and Value depend on Type:

. If Type=A, then Name is a hostname and Vaue isthe IP address for the hostname. Thus, a Type A record provides

the standard hostname to | P address mapping. Asan example, (r el ayl. bar. f oo. com 145. 37. 93. 126,
A) isaTypeA record.

. If Type=NS, then Nameis adomain (such asfoo.com) and Vaueis the hostname of aserver that knows how to
obtain the IP addresses for hosts in the domain. This record is used to route DNS queries further along in the query
chain. Asan example, (f oo. com dns. foo.com NS) isaTypeNSrecord.

. If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This record can provide querying
hosts the canonical name for a hostname. Asan example, (f oo. com rel ayl. bar.foo.com CNAME) isa
CNAME record.

. If Type=MX, then Valueis ahostname of amail server that has an alias hosthame Name. As an example, ( f 0o.
com mail.bar.foo.com MX) isanMX record. MX records allow the hostnames of mail serversto have
simple aliases.

If aname server is authoritative for a particular hostname, then the name server will contain a Type A record for the
hostname. (Even if the name server is not authoritative, it may contain a Type A record in its cache.) If aserver is not
authoritative for a hostname, then the server will contain a Type NS record for the domain that includes the hostname; it will
also contain a Type A record that provides the | P address of the name server in the Vaue field of the NS record. Asan
example, suppose aroot server is not authoritative for the host gaia.cs.umass.edu. Then the root server will contain arecord
for adomain that includes the host cs.umass.edu, e.g.,

(umass. edu, dns. unass. edu, NS).

The root server would also contain atype A record which maps the name server dns.umass.edu to an IP address, e.g.,

(dns. umass. edu, 128.119.40.111, A).

2.5.4 DNS Messages

Earlier in this section we alluded to DNS query and reply messages. These are the only two kinds of DNS messages.
Furthermore, both request and reply messages have the same format, as shown in Figure 2.5-5.
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Identification flags T
number of questions number of answer RRs 12 bytes
number of authority REs | number of additional RREs l
gquestions

(wariable number of guestions)

answers
(wariable number of resource records)

authority
(warable number of resource records)

additional information
(wvariable number of resource records)

Figure 2.5-5: DNS message format
The semantics of the various fields in a DNS message are as follows:

. Thefirst 12 bytesisthe header section, which has a number of fields. Thefirst field is a 16-bit number that identifies
the query. Thisidentifier is copied into the reply message to a query, alowing the client to match received replies with
sent queries. There are anumber of flagsin the flag field. A one-bit query/reply flag indicates whether the messageis
aquery (0) or areply (1). A one bit authoritative flag is set in areply message when a name server is an authoritative
server for aqueried name. A one bit recursion-desired flag is set when aclient (host or name server) desires that the
name server to perform recursion when it doesn't have the record. A one-bit recursion availablefield isset in areply if
the name server supports recursion. In the header, there are also four "number of" fields. These fields indicate the
number of occurrences of the four types of "data" sections that follow the header.

. The question section contains information about the query that is being made. This section includes (i) aname field
that contains the name that is being queried, and (ii) atype field that indicates the type of question being asked about
the name (e.g., a host address associated with aname - type"A", or the mail server for aname - type "MX").

. Inareply from a name server, the answer section contains the resource records for the name that was originally
gueried. Recall that in each resource record there isthe Type (e.g., A, NS, CSNAME and M X), the Vaue and the
TTL. A reply can return multiple RRs in the answer, since a hostname can have multiple | P addresses (e.g., for
replicated Web servers, as discussed earlier in this section).

. Theauthority section contains records of other authoritative servers.

. The additional section contains other "helpful” records. For example, the answer field in areply to an MX query will
contain the hostname of amail server associated with the alias name Name. The additional section will contain a
Type A record providing the | P address for the canonical hostname of the mail server.
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The discussion above has focussed on how datais retrieved from the DNS database. 'Y ou might be wondering how data gets
into the database in the first place? Until recently, the contents of each DNS server was configured statically, e.g., from a
configuration file created by a system manager. More recently, an UPDATE option has been added to the DNS protocol to
allow datato be dynamically added or deleted from the database via DNS messages. [RFC 2136] specifies DNS dynamic

updates.

DNSNet provides a nice collection of documents pertaining to DNS[DNSNet]. The Internet Software Consortium provides
many resources for BIND, a popular public-domain name server for Unix machines [BIND].
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nslookup

There are at |l east three client programs available for exploring the contents of name serversin the
Internet. The most widely available program is nslookup; two other programs, which are alittle more
powerful than nslookup, are dig and host. Lucky for us, severa institutions and individuals have made
these client programs available through Web. browsers.

We stongly encourage you to get your hands dirty and play with these programs. They can give
significant insight into how DNS works. All of these programs mimic DNS clients. They send aDNS
guery message to a name server (which can often be supplied by the user), and they receive a
corresponding DNS response. They then extract information (e.g., |P addresses, whether the response is
authoritative, etc.) and present the information to the user.

nslookup

Some of the nslookup sites provide only the basic nslookup service, i.e., they allow you to enter a
hostname and they return an | P address. Visit some of the nslookup sights below and try entering
hostnames for popular hosts (such as cnn.com or www.microsoft.com) as well as hostnames for the less
popular hosts. You will see that the popular hostnames typically return numerous | P addresses, because
the site isreplicated in numerous servers. (See the discussion in Section 2.5 on DNS rotation.) Some of
the nslookup sites aso return the hostname and | P address of the name server that provides the
information. Also, some of the nslookup sites indicate whether the result is non-authoritative (i.e.,
obtained from a cache).

http://namespace.pgmedia.net/nsl ookup/

http://www.infobear.com/nsl ookup-form.cgi

Some of the nslookup sites allow the user to supply more information. For example, the user can request
to receive the canonical hostname and | P address for amail server. And the user can also indicate the
name server at which it wants the chain of queriesto begin.

http://jeff.aaron.com/~jmaaron/nsl ookup.cqi

http://ipalloc.utah.edu/HTML Docs/NSL ookup.html

dig and host

The programs dig and host allow the user to further refine the query by indicating, for example, whether
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nslookup

the query should be recursive or interative. There are currently not as many Web sites that provide the
dig and host service. But there are afew:

http://www.toetag.com/cgi-bin/host

http://www.netliner.com/dig.html
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Copyright 1996-1999 Keith W. Ross and James F. Kurose

file:///DJ/Downl oads/Livros/computagdo/ Computer%20Net...%620A pproach%20Featuring%20the%620I nternet/nsl ookup.htm (2 of 2)20/11/2004 15:51:58


file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#25
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#26
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/Contents-2.htm

Socket Programming in Java

2.6 Socket Programming with TCP

This and the subsequent sections provide an introduction to network application development. Recall from Section 2.1 that the
core of anetwork application consists of a pair of programs -- a client program and a server program. When these two
programs are executed, a client and server process are created, and these two processes communicate with each other by
reading from and writing to sockets. When a creating a networking application, the developer's main task is to write the code
for both the client and server programs.

There are two sorts of client-server applications. One sort is a client-server application that is an implementation of a protocol
standard defined in an RFC. For such an implementation, the client and server programs must conform to the rules dictated by
the RFC. For example, the client program could be an implementation of the FTP client, defined in [RFC 959], and the server
program could be implementation of the FTP server, also defined in [RFC 959]. If one developer writes code for the client
program and an independent developer writes code for the server program, and both devel opers carefully follow the rules of the
RFC, then the two programs will be able to interoperate. Indeed, most of today's network applications involve communication
between client and server programs that have been created by independent devel opers. (For example, a Netscape browser
communicating with an Apache Web server, or aFTP client on a PC uploading afileto a Unix FTP server.) When aclient or
server program implements a protocol defined in an RFC, it should use the port number associated with the protocol. (Port
numbers were briefly discussed in Section 2.1. They will be covered in more detail in the next chapter.)

The other sort of client-server application isaproprietary client-server application. In this case the client and server programs
do not necessarily conform to any existing RFC. A single developer (or development team) creates both the client and server
programs, and the devel oper has compl ete control over what goes in the code. But because the code does not implement a
public-domain protocol, other independent developers will not be able to develop code that interoperate with the application.
When developing a proprietary application, the developer must be careful not to use one of the the well-known port numbers
defined in the RFCs.

In this and the next section, we will examine the key issues for the development of a proprietary client-server application.
During the development phase, one of the first decisions the devel oper must make is whether the application isto run over TCP
or over UDP. TCP is connection-oriented and provides areliable byte stream channel through which data flows between two
endsystems. UDP is connectionless and sends independent packets of data from one end system to the other, without any
guarantees about delivery. In this section we develop a simple-client application that runs over TCP; in the subsequent section,
we develop a ssimple-client application that runs over UDP.

We present these ssmple TCP and UDP applications in Java. We could have written the code in C or C++, but we opted for
Javafor several reasons. First, the applications are more neatly and cleanly written in Java; with Javathere are fewer lines of
code, and each line can be explained to the novice programmer without much difficulty. Second, client-server programming in
Javais becoming increasingly popular, and may even become the norm in upcoming years. Javais platform independent, it has
exception mechanisms for robust handling of common problems that occur during 1/O and networking operations, and its
threading facilities provide away to easily implement powerful servers. But there is no need to be frightened if you are not
familiar with Java. Y ou should be able to follow the code if you have experience programming in another language.

For readers who are interested in client-server programming in C, there are several good references available, including
[Stevens 1990] , [Frost 1994] and [Kurose 1996] .

2.6.1 Socket Programming with TCP

Recall from Section 2.1 that processes running on different machines communicate with each other by sending messages into
sockets. We said that each process was analogous to a house and the process's socket is analogous to adoor. As shown in
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Figure 2.6.1, the socket is the door between the application process and TCP. The application developer has control of
everything on the application-layer side of the socket; however, it haslittle control of the transport-layer side. (At the very
most, the application developer has the ability to fix afew TCP parameters, such as maximum buffer and maximum segment
Sizes.)

socket : : socket
| |
| |
TP with : : TP with
[Arocess t:”‘;ﬁ%rﬁ - ! D:ﬁzrs Process
wariabhles wariables

e i IEE——
controlled bycontrolled by
application operating
developer system

host

|

1

|

: e I . —
| controlled by controlled by
: operating application
I system dewveloper

|

! host

|

Figure 2.6-1: Processes communicating through TCP sockets.

Now let'sto alittle closer look at the interaction of the client and server programs. The client has the job of initiating contact
with the server. In order for the server to be able to react to the client's initial contact, the server has to be ready. Thisimplies
two things. First, the server program can not be dormant; it must be running as a process before the client attemptsto initiate
contact. Second, the server program must have some sort of door (i.e., socket) that welcomes some initial contact from aclient
(running on an arbitrary machine). Using our house/door analogy for a process/socket, we will sometimes refer to the client's
initial contact as "knocking on the door".

With the server process running, the client process can initiate a TCP connection to the server. Thisis donein the client
program by creating a socket object. When the client creates its socket object, it specifies the address of the server process,
namely, the | P address of the server and the port number of the process. Upon creation of the socket object, TCP in the client
initiates a three-way handshake and establishes a TCP connection with the server. The three-way handshake is completely
transparent to the client and server programs.

During the three-way handshake, the client process knocks on the welcoming door of the server process. When the server
"hears' the knocking, it creates a new door (i.e., a new socket) that is dedicated to that particular client. In our example below,
the welcoming door is a ServerSocket object that we call the welcomeSocket. When a client knocks on this door, the program
invokes welcomeSocket's accept() method, which creates a new door for the client. At the end of the handshaking phase, a TCP
connection exists between the client's socket and the server's new socket. Henceforth, we refer to the new socket as the server's
"connection socket".

From the application's perspective, the TCP connection is adirect virtual pipe between the client's socket and the server's
connection socket. The client process can send arbitrary bytes into its socket; TCP guarantees that the server process will
receive (through the connection socket) each byte in the order sent. Furthermore, just as people can go in and out the same
door, the client process can also receive bytes from its socket and the server process can also send bytes into its connection
socket. Thisisillustrated in Figure 2.6.2.
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client bytes ™ connection
socket <4— bytes socket
client process Server process

Figure 2.6-2: Client socket, welcoming socket and connection socket.

Because sockets play a central role in client-server applications, client-server application development isalso referred to as
socket programming. Before providing our example client-server application, it is useful to discuss the notion of a stream. A
stream is aflowing sequence of charactersthat flow into or out of a process. Each stream is either an input stream for the
process or an output stream for the process. If the stream is an input stream, then it is attached to some input source for the
process, such as standard input (the keyboard) or a socket into which characters flow from the Internet. If the stream is an
output stream, then it is attached to some output source for the process, such as standard output (the monitor) or a socket out of
which characters flow into the Internet.

2.6.2 An Example Client-Server Application in Java

We shall use the following simple client-server application to demonstrate socket programming for both TCP and UDP:

A client reads aline from its standard input (keyboard) and sends the line out its socket to the server.
The server reads a line from its connection socket.

The server converts the line to uppercase.

The server sends the modified line out its connection socket to the client.

The client reads the modified line from its socket and prints the line on its standard output (monitor).

gprpwWDdE

Below we provide the client-server program pair for a TCP implementation of the application. We provide a detailed, line-by-
line analysis after each program. The client program is called TCPClient.java, and the server programis called TCPServer.java.
In order to emphasize the key issues, we intentionally provide code that is to the point but not bullet proof. "Good code" would
certainly have afew more auxiliary lines.

Once the the two programs are compiled on their respective hosts, the server program is first executed at the server, which
creates a process at the server. As discussed above, the server process waits to be contacted by a client process. When the client
program is executed, a processis created at the client, and this process contacts the server and establishes a TCP connection
with it. The user at the client may then "use" the application to send a line and then receive a capitalized version of the line.

TCPClient.java

Here is the code for the client side of the application:
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i mport java.io.*;
i mport java. net.*;
class TCPO ient {

public static void main(String argv[]) throws Exception

{
String sentence;
String nodifiedSentence;
Buf f er edReader i nFromJser =
new Buf f er edReader (new I nput St r eanReader (Systemin));
Socket client Socket = new Socket ("hostnane", 6789);
Dat aQut put St ream out ToSer ver =
new Dat aCut put St ream( cl i ent Socket . get Qut put Strean());
Buf f er edReader i nFronfterver =
new Buf f er edReader (new | nput St r eanReader (cl i ent Socket. getl nput Stream()));
sentence = i nFromJser. readLi ne();
out ToServer.witeBytes(sentence + '\n');
nodi fi edSent ence = i nFronterver.readLi ne();
Systemout. println("FROM SERVER " + nodi fi edSent ence);
cl i ent Socket. cl ose();
}

The program TCPClient creates three streams and one socket, as shown in Figure 2.6-3.
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outToServer —»

mFromU ser —*

inFrom Server +—

_ _ clientSocket
Figure 2.6-3: TCPClient has three streams and one socket.

The socket is called clientSocket. The stream inFromUser is an input stream to the program; it is attached to the standard
input, i.e., the keyboard. When the user types characters on the keyboard, the characters flow into the stream inFromUser.
The stream inFromSer ver is another input stream to the program; it is attached to the socket. Characters that arrive from the
network flow into the stream inFromSer ver. Finally, the stream outToServer isis an output stream from the program; it is
also attached to the socket. Characters that the client sends to the network flow into the stream out T oSer ver .

Let's now take alook at the various lines in the code.

I nport java.io.*;
I nport java. net.*;

java.io and java.net are java packages. The java.io package contains classes for input and output streams. In particular, the
java.io package contains the BufferedReader and DataOutputStream classes, classes that the program uses to create the three

streams illustrated above. The java.net package provides classes for network support. In particular, it contains the Socket and
ServerSocket classes. The clientSocket object of this program is derived from the Socket class.

class TCPO ient {
public static void main(String argv[]) throws Exception

The above is standard stuff that you see at the beginning of most java code. Thefirst lineis the beginning of a class definition
block. The keyword class begins the class definition for the class named TCPClient. A class contains variables and methods.
The variables and methods of the class are embraced by the curly brackets that begin and end the class definition block. The
class TCPClient has no class variables and exactly one method, the main( ) method. Methods are similar to the functions or
procedures in languages such as C; the main method in the Javalanguage is similar to the main function in C and C++. When
the Javainterpreter executes an application (by being invoked upon the application's controlling class), it starts by calling the
class's main method. The main method then calls al the other methods required to run the application. For this introduction into
socket programming in Java, you may ignore the keywords public, static, void, main, throws Exceptions (although you must
include them in the code).

String sentence;
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String nodi fi edSent ence;

These above two lines declare objects of type String. The object sentence is the string typed by the user and sent to the server.
The object modifiedSentence is the string obtained from the server and sent the user's standard output.

Buf f eredReader i nFromJser =
new BufferedReader (new | nput St reanReader (Systemin));

The above line creates the stream object inFromUser of type BufferedReader. The input stream isinitialized with System.in,
which attaches the stream to the standard input. The command allows the client to read text from its keyboard.

Socket clientSocket = new Socket (" hostnane", 6789);

The above line creates the object clientSocket of type Socket. It also initiates the TCP connection between client and server.

The variable "host name" must be replaced with the host name of the server (e.g., "fling.seas.upenn.edu”). Before the TCP
connection is actually initiated, the client performs a DNS look up on the hosthame to obtain the host's | P address. The number
6789 isthe port number. Y ou can use a different port number; but you must make sure that you use the same port number at the
server side of the application. As discussed earlier, the host's | P address along with the applications port number identifies the
Server process.

Dat aQut put St r eam out ToSer ver =
new Dat aCut put St rean{ cl i ent Socket . get Qut put Stream()) ;

Buf f er edReader i nFronBerver =
new Buf f er edReader (new i nput St r eanReader (cl i ent Socket . get | nput Strean()));

The above two lines create stream objects that are attached to the socket. The outToServer stream provides the process output
to the socket. The inFromSer ver stream provides the process input from the socket. (See diagram above.)

sentence = i nFronlJser. readLi ne();

The above line places aline typed by user into the string sentence. The string sentence continues to gather characters until the
user ends the line by typing a carriage return. The line passes from standard input through the stream inFromUser into the
string sentence.

out ToServer.witeBytes(sentence + '\n');

The above line sends the string sentence augmented with a carriage return into the outToServer stream. The augmented
sentence flows through the client's socket and into the TCP pipe. The client then waits to receive characters from the server.

nodi fi edSent ence = i nFronBerver.readLi ne();

When characters arrive from the server, they flow through the stream inFromSer ver and get placed into the string
modifiedSentence. Characters continue to accumulate in modifiedSentence until the line ends with a carriage return character.

Systemout. println("FROM SERVER " + nodifi edSentence);

The above line prints to the monitor the string modifiedSentence returned by the server.
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cl i ent Socket. cl ose();

Thislast line closes the socket and, hence, closes the TCP connection between the client and the server. It causes TCPin the
client to send a TCP message to TCP in the server (see Section 3.5).

TCPServer.java

Now let's take alook at the server program.

i mport java.io.*;
I mport java. net.*;

cl ass TCPServer {

public static void main(String argv[]) throws Exception

{

)

String clientSentence;
String capitalizedSentence;

Server Socket wel coneSocket = new Server Socket (6789) ;

while(true) {

Socket connectionSocket = wel comeSocket. accept();
Buf f eredReader inFronClient =
new Buf f er edReader (new | nput St r eanReader (connect i onSocket . get | nput St r eam
Dat aQut put Stream out Todient =
new Dat aCut put St r ean( connect i onSocket . get Qut put Strean());
clientSentence = inFronClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

out ToClient.witeBytes(capitalizedSentence);

TCPServer has many similarities with TCPClient. Let us now take alook at the linesin TCPServer.java. We will not comment
on the lineswhich areidentical or similar to commands in TCPClient.java.

Thefirst linein TCPServer that is substantially different from what we saw in TCPClient is:
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Server Socket wel coneSocket = new Server Socket (6789);

The above line creates the object welcomeSocket, which is of type ServerSocket. The WelcomeSocket, as discussed above, is

asort of door that waits for a knock from some client. The port number 6789 identifies the process at the server. The following
lineis:

Socket connecti onSocket = wel conmeSocket . accept();

The above line creates a new socket, called connectionSocket, when some client knocks on welcomeSocket. TCP then
establishes adirect virtual pipe between clientSocket at the client and connectionSocket at the server. The client and server
can then send bytes to each other over the pipe, and all bytes sent arrive at the other sidein order. With connectionSock et
established, the server can continue to listen for other requests from other clients for the application using welcomeSocket.
(Thisversion of the program doesn't actually listen for more connection requests. But it can be modified with threads to do so.)
The program then creates several stream objects, analogous to the stream objects created in clientSocket. Now consider:

capitalizedSentence = clientSentence.toUpperCase() + '\n';

This command is the heart of application. It takes the line sent by the client, capitalizesit and adds a carriage return. It uses the
method toUpperCase(). All the other commands in the program are peripheral; they are used for communication with the client.

That completes our analysis of the TCP program pair. Recall that TCP provides areliable data transfer service. Thisimplies, in
particular, that if one the user's characters gets corrupted in the network, then the client host will retransmit the character,
thereby providing correct delivery of the data. These retransmissions are completely transparent to the application programs.
The DNS lookup is aso transparent to the application programs.

To test the program pair, you install and compile TCPClient.javain one host and TCPServer.javain another host. Be sure to
include the proper host name of the server in TCPClient.java. Y ou then execute TCPServer.class, the compiled server program,
in the server. This creates a process in the server which idles until it is contacted by some client. Then you execute TCPClient.
class, the compiled client program, in the client. This creates a process in the client and establishes a TCP connection between
the client and server processes. Finally, to use the application, you type a sentence followed by

acarriage return.

To develop your own client-server application, you can begin by slightly modifying the programs. For example, instead of
converting al the letters to uppercase, the server can count the number of timesthe letter s appears and return this number.
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2.7 Socket Programming with UDP

We learned in the previous section that when two processes communicate over TCP, from the
perspective of the processesit isasif thereisa pipe between the two processes. This pipe remainsin
place until one of the two processes closesit. When one of the processes wants to send some bytes to the
other process, it smply inserts the bytes into the pipe. The sending process does not have to attach a
destination address to the bytes because the pipe islogically connected to the destination. Furthermore,
the pipe provides areliably byte stream channel -- the sequence of bytes received by the receiving
process is exactly the sequence bytes that the sender inserted into the pipe.

UDP aso allows two (or more) processes running on different hosts to communicate. However, UDP
differs from TCP in many fundamental ways. First, UDP is a connectionless service -- there isn't an
initial handshaking phase during which a pipe is established between the two processes. Because UDP
doesn't have a pipe, when a process wants to send a batch of bytes to another process, the sending
process must exclude attach the destination process's address to the batch of bytes. And this must be
done for each batch of bytes the sending process sends. Thus UDP is similar to ataxi service -- each
time a group of people get in ataxi, the group hasto inform the driver of the destination address. As
with TCP, the destination address is a tuple consisting of the IP address of the destination host and the
port number of the destination process. We shall refer to the batch of information bytes along with the IP
destination address and port number as the the "packet".

After having created a packet, the sending process pushes the packet into the network through a socket.
Continuing with our taxi analogy, at the other side of the socket, there is ataxi waiting for the packet.
The taxi then drives the packet in the direction of the packet's destination address. However, the taxi
does not guarantee that it will eventually get the datagram to its ultimate destination; the taxi could break
down. In other terms, UDP provides an unreliable transport service to its communication processes -- it
makes no guarantees that a datagram will reach its ultimate destination.

In this section we will illustrate UDP client-server programming by redevel oping the same application
of the previous section, but this time over UDP. We shall also see that the Java code for UDP is different
from the TCP code in many important ways. In particular, we shall seethat thereis (i) noinitia
handshaking between the two processes, and therefore no need for a welcoming socket, (ii) no streams
are attached to the sockets, (iii) the sending hosts creates "packets’ by attaching the | P destination
address and port number to each batch of bytesit sends, and (iv) the receiving process must unravel to
received packet to obtain the packet's information bytes. Recall once again our simple application:

1. A client reads aline from its standard input (keyboard) and sends the line out its socket to the
server.

2. The server reads aline from its socket.

3. The server converts the line to uppercase.
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4. The server sends the modified line out its socket to the client.
5. Theclient reads the modified line through its socket and prints the line on its standard output
(monitor).

UDPClient.java
Here isthe code for the client side of the application:

| nport java.io.*;
| nport java.net.*;

class UDPd ient {
public static void main(String args[]) throws Exception

{

Buf f er edReader i nFromJser =
new Buf f er edReader ( new | nput St r eanReader (Systemin));

Dat agr anSocket client Socket = new Dat agr anSocket () ;
| net Addr ess | PAddress = | net Addr ess. get ByNane("host nane") ;

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024],;

String sentence = i nFronlJser. readLi ne();
sendDat a = sentence. get Bytes();

Dat agr anPacket sendPacket =
new Dat agr anPacket (sendDat a, sendData. | ength, | PAddress,
9876) ;

client Socket. send(sendPacket) ;

Dat agr anPacket recei vePacket =
new Dat agr anPacket (recei veData, receiveData.length);

client Socket.receive(recei vePacket);
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String nodi fi edSent ence =
new String(recei vePacket.getData());

System out. println("FROM SERVER: " + nodi fi edSent ence);

client Socket. cl ose();

}

The program UDPClient.java constructs one stream and one socket, as shown in Figure 2.7-1. The
socket is called clientSocket, and it is of type DatagramSocket. Note that UDP uses a different kind of
socket than TCP at the client. In particular, with UDP our client uses a DatagramSocket whereas with
TCP our client used a Socket. The stream inFromUser is an input stream to the program; it is attached
to the standard input, i.e., the keyboard. We had an equivalent stream in our TCP version of the
program. When the user types characters on the keyboard, the characters flow into the stream
inFromUser. But in contrast with TCP, there are no streams (input or output) attached to the socket.

Instead of feeding bytes to stream attached to a Socket object, UDP will push individual packets through
the DatagramSocket object.

inFromUszser —

receivePacket+——

| o clientSocket
Figure 2.7-1: UDPClient.java has one stream and one socket.
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Let's now take alook at the linesin the code that differ significantly from TCPClient.java.

Dat agr anSocket cli ent Socket = new Dat agr anSocket () ;

The above line creates the object clientSocket of type DatagramSocket. In contrast with TCPClient.java,

this line does not initiate a TCP connection. In particular, the client host does not contact the server host
upon execution of thisline. For this reason, the constructor DatagramSocket() does not take the server
hostname or port number as arguments. Using our door/pipe analogy, the execution of the above line
creates a door for the client process but does not create a pipe between the two processes.

| net Addr ess | PAddress = | net Addr ess. get ByNane( " host nane");

In order to send bytes to a destination process, we shall need to obtain the address of the process. Part of
this addressis the IP address of the destination host. The above line invokes a DNS look up that
trandates "hostname” (supplied in the code by the developer) to an IP address. DNS was also invoked by
the TCP version of the client, although it was done there implicitly rather than explicitly. The method
getByName() takes as an argument the hostname of the server and returns the I P address of this same
server. It places this address in the object | PAddress of type InetAddress.

byte[] sendData = new byte[ 1024];
byte[] receiveData = new byte[1024];

The byte arrays sendData and receiveData will hold the data the client sends and receives, respectively.

sendDat a = sentence. get Bytes();

The above line essentially performs atype conversion. It takes the string sentence and renames it as
sendData, which is an array of bytes.

Dat agr anPacket sendPacket =
new Dat agr anPacket (sendDat a, sendDat a. | ength, | PAddress, 9876);

The above line constructs the packet, sendPacket, that the the client will pop into the network through
its socket. This packet includes that data that is contained in the packet, sendData, the length of this
data, the IP address of the server, and the port number of the application (which we have set to 9876).
Note that sendPacket is of type DatagramPacket.

client Socket . send(sendPacket) ;

In the above line the method send() of the object clientSock et takes the packet just constructed and pops
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it into the network through clientSocket. Once again, note that UDP sends the line of charactersin a
manner very different from TCP. TCP simply inserted the line into a stream, which had alogical direct
connection to the server; UDP creates a packet which includes the address of the server. After sending
the packet, the client then waits to receive a packet from the server.

Dat agr anPacket recei vePacket =
new Dat agr anPacket (recei veData, receiveData.l ength);

In the above line, while waiting for the packet from the server, the client creates a place holder for the
packet, receivePacket, an object of type DatagramPacket.

client Socket.receive(recei vePacket);

Theclient idles until it receives a packet; when it does receive a packet, it puts the packet in
receivePacket.

String nodi fiedSentence =
new String(recei vePacket. getData());

The above line extracts the data from r eceivePacket and performs atype conversion, converting an
array of bytesinto the string modifiedSentence.

System out. println("FROM SERVER: " + nodi fi edSent ence) ;

The above, which is also present in TCPClient, prints out the string modifiedSentence at the client's
monitor.

cl i ent Socket. cl ose();

This last line closes the socket. Because UDP is connectionless, this line does not cause the client to
send atranport-layer message to the server (in contrast with TCPClient).

UDPServer.java
Let's now take alook at the server side of the application:

| nport java.io.*;
| nport java.net.*;

cl ass UDPServer {
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public static void main(String args[]) throws Exception

{

Dat agr anSocket server Socket = new Dat agr anSocket (9876) ;

byte[] receiveData = new byte[ 1024];
byte[] sendData = new byte[1024];

whi | e(true)
{

Dat agr anPacket recei vePacket =
new Dat agr anPacket (recei veData, receiveData.length);

server Socket . recei ve(recei vePacket);
String sentence = new String(receivePacket.getData());

| net Addr ess | PAddress = recei vePacket. get Address();

i nt port = receivePacket. getPort();

String capitalizedSentence = sentence.toUpper Case();
sendData = capitalizedSentence. getBytes();

Dat agr anPacket sendPacket =
new Dat agr anPacket (sendDat a, sendData. | ength, | PAddress,

port);

server Socket . send(sendPacket ) ;

}

The program UDPServer.java constructs one socket, as shown in Figure 2.7-2. The socket is called
server Socket. It isan object of type DatagramSocket, as was the socket in the client side of the

application. Once again, no streams are attached to the socket.
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receiveData +——

1

toUpperCase

sendData —0

serversocket
Figure 2.7-2: UDPServer.java has one socket.

Let's now take alook at the lines in the code that differ from TCPServer.java.

Dat agr anSocket server Socket = new Dat agr anSocket (9876) ;

The above line constructs the DatagramSocket ser ver Socket at port 9876. All data sent and received
will pass through this socket. Because UDP is connectionless, we do not have to spawn anew socket
and continue to listen for new connection requests, as done in TCPServer.java. If multiple clients access
this application, they will all send their packets into this single door, server Socket.

String sentence = new String(recei vePacket.getData());
| net Addr ess | PAddress = recei vePacket . get Address();

Int port = receivePacket. getPort();

The above three lines unravel the packet that arrives from the client. The first of the three lines extracts
the data from the packet and places the data in the String sentence; it has an analogous linein
UDPClient. The second line extracts the | P address; the third line extracts the client port number, which
is chosen by the client and is different from the server port number 9876. (We will discuss client port

file://ID})/Downl oads/Livros/computagdo/ Computer%20Net...n%20A pproach%20Featuring%20the%620I nternet/udpDev.html (7 of 8)20/11/2004 15:52:02



udpDev

numbers in some detail in the next chapter.) It is necessary for the server to obtain the address (IP
address and port number) of the client, so that it can send the capitalized sentence back to the client.

That completes our analysis of the UDP program pair. To test the application, you install and compile
UDPClient.javain one host and UDPServer.javain another host. (Be sure to include the proper
hostname of the server in UDPClient.java.) Then execute the two programs on their respective hosts.
Unlike with TCP, you can first execute the client side and then the server side. Thisis because, when
you execute the client side, the client process does not attempt to initiate a connection with the server.
Once you have executed the client and server programs, you may use the application by typing aline at
the client.

Return to Table Of Contents

Copyright Keith W. Ross and James F, Kurose 1996-2000
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2.8 Building a Simple Web Server

Now that we have studied HTTP in some detail and have learned how to write client-server applications
in Java, let us combine this new-found knowledge and build a simple Web server in Java. We will see
that the task is remarkably easy.

Our goal isto build a server that does the following:

. Handles only one HTTP request.
« Accepts and parses the HTTP request.
. Getstherequested file from the server'sfile system.
. Creates an HT TP response message consisting of the requested file preceded by header lines.
. Sends the response directly to the client.
Let'stry to make the code as simple as possible in order to shed insight on the networking concerns. The

code that we present will be far from bullet proof! For example, let's not worry about handling
exceptions. And let's assume that the client requests an object that isin server'sfile system.

WebServer.java

Here isthe code for asimple Web server:
| nport java.io.*;

| nport java. net.*;

| nport java.util.*;

cl ass WebServer {

public static void main(String argv[]) throws Exception {

String request Messageli ne;
String fil eNane;

Server Socket |istenSocket = new Server Socket (6789);
Socket connecti onSocket = |istenSocket. accept();

Buf f eredReader i nFronClient =
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new Buf f er edReader ( new | nput St r eanrReader (connect i onSocket .
getlnput Streanm()));
Dat aCut put Stream out Tod i ent =
new Dat aCQut put St rean{ connecti onSocket . get Qut put Strean() ) ;

request MessagelLi ne = i nFronCl i ent. readLi ne();

StringTokeni zer tokenizedLine =
new StringTokeni zer (r equest MessagelLi ne);

I f (tokeni zedLi ne. next Token() . equal s("CGET")){
fileName = tokenizedLi ne. next Token();

I f (fileNanme.startsWth("/") == true )
fileName = fileNane.substring(1);

File file = new File(fil eNane);
I nt nunOFBytes = (int) file.length();

FilelnputStreaminFile = new FilelnputStream (fil eNane);

byte[] filelnBytes = new byte[ nunt Byt es] ;
inFile.read(filelnBytes);

out ToCient.witeBytes("HTTP/ 1.0 200 Docunent Follows\r\n");

i f (fileNanme.endsWth(".jpg"))
outToClient.witeBytes("Content-Type: imge/jpeg\r

\n");
if (fileNanme.endsWth(".gif"))
out ToCient.witeBytes("Content-Type: image/gif\r
\n");
outToClient.witeBytes("Content-Length: " + nunOfBytes + "\r
\n");

out ToCient.witeBytes("\r\n");

outToClient.wite(filelnBytes, 0, nunOfBytes);
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connecti onSocket . cl ose();

}

el se Systemout. println("Bad Request Message");

Let us now take alook at the code. The first half the program is almost identical to TCPServer.java. As
with TCPServer.java, we import the java.io and java.net packages. In addition to these two packages
we also import the java.util package, which contains the StringTokenizer class, which is used for

parsing HT TP request messages. Looking now at the lines within the class WebServer, we define two
string objects:

String request Messageli ne;
String fil eNane;

The object requestM essagel_ine is a string that will contain the first line in the HTTP request message.
The object fileName is a string that will contain the file name of the requested file. The next set of
commandsis identical to the corresponding set of commands in TCPServer.java.

Server Socket |istenSocket = new Server Socket (6789);
Socket connecti onSocket = |istenSocket. accept();

Buf f er edReader inFronClient =
new Buf f er edReader ( new | nput St r eanmReader (connect i onSocket .
getlnputStream()));
Dat aQut put St ream out ToCl i ent =

new Dat aQut put St r eanm{ connect i onSocket . get Qut put Stream() ) ;

Two socket-like objects are created. The first of these objectsislistenSocket, which is of type
ServerSocket. The object listenSocket is created by the server program before receiving arequest for a

TCP connection from aclient. It listens at port 6789, and waits for a request from some client to
establish a TCP connection. When a request for a connection arrives, the accept() method of
listenSocket creates a new object, connectionSocket, of type Socket. Next two streams are created: the
BufferedReader inFromClient and the DataOutputStream outToClient. The HTTP request message
comes from the network, through connectionSocket and into inFromClient; the HTTP response
message goesinto outToClient, through connectionSocket and into the network. The remaining
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portion of the code differs significantly from TCPServer.java.

request MessageLi ne = inFronCl i ent.readLi ne();

The above command reads the first line of the HTTP request message. Thislineis supposed to be of the
form:

GET file_name HTTP/1.0
Our server must now parse the line to extract the filename.

StringTokeni zer tokenizedLi ne = new StringTokeni zer
(request MessagelLi ne) ;

I f (tokenizedLi ne. next Token() . equal s("GET")){
fil eName = tokeni zedLi ne. next Token();

If (fileNane.startsWth("/") == true )
fileName = fileNane.substring( 1 );

The above commands parse the first line of the request message to obtain the requested filename. The
object tokenizedL ine can be thought of as the original request line with each of the "words" GET,
file_name and HTTP/1.0 placed in a separate place holder called atoken. The server knows from the
HTTP RFC that the file name for the requested file is contained in the token that follows the token
containing "GET". Thisfile nameis put in astring called fileName. The purpose of the last if statement
in the above code isto remove the backslash that may precede the filename.

FilelnputStreaminFile = new FilelnputStream (fil eNane);

The above command attaches a stream, inFile, to the file fileName.

byte[] filelnBytes = new byt e[ nunCf Byt es] ;
InFile.read(fil el nBytes);

The above commands determine the size of the file and construct an array of bytes of that size. The
name of the array isfilelnBytes. The last command reads from the stream inFile to the byte array

filel nBytes. The program must convert to bytes because the output stream outToClient may only be fed
with bytes.
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Now we are ready to construct the HT TP response message. To this end we must first send the HTTP
response header lines into the DataOutputStream out T oClient:

out ToClient.witeBytes("HTTP/1.0 200 Docunent Fol |l ows\r\n");

I f (fileNanme.endsWth(".jpg"))
out ToCient.witeBytes("Content-Type: inage/jpeg\r\n");
if (fileNanme.endsWth(".gif"))
outToClient.witeBytes("Content-Type: image/gif\r\n");

out ToCient.witeBytes("Content-Length: " + nunCOfBytes + "\r
\n");
out ToClient.witeBytes("\r\n");

The above set of commands are particularly interesting. These commands prepare the header lines for
HTTP response message and send the header lines to the TCP send buffer. The first command sends the
mandatory statusline: HTTP/1.0 200 Document Follows, followed by a carriage return and aline feed.
The next two command lines prepare a single content-type header line. If the server isto transfer a gif
Image, then the server prepares the header line Content-Type: image/jpeg. If, on the other hand, the
server isto transfer ajpeg image, then the server prepares the header line Content-Type: image/gif. (In
this ssmple Web server, no content line is sent if the object is neither agif nor ajpeg image.) The server
then prepares and sends a content-length header line and a mandatory blank line to precede the object
itself that isto be sent. We now must send the file FileName into the DataOutputStream out T oClient.
But because outToClient works with bytes, we first must perform a conversion to bytes:

We can now send the requested file:

outToClient.wite(filelnBytes, 0, nunOfBytes);

The above command sends the requested file, filel nBytes, to the TCP send buffer. TCP will concatenate
thefile, filel nBytes, to the header lines just created, segment the concatenation if necessary, and send
the TCP segments to the client.

connecti onSocket . cl ose();

After serving one request for onefile, the server performs some housekeeping by closing the socket
connectionSocket.

To test thisweb server, install it on a host. Also put some filesin the host. Then use a browser running
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on any machine to request afile from the server. When you request afile, you will need to use the port
number that you include in the server code (e.g., 6789). So if your server islocated at somehost.
somewhere.edu, the file is somefile.ntml, and the port number is 6789, then the browser should request
http://somehost.somewhere.edu:6789/somefile.html .

Return to Table of Contents

Copyright 1996-2000 Keith W. Ross and James F. Kurose
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Chapter 2: Summary

2.10 Summary

In this chapter we've studied both the conceptual and the implementation aspects of network
applications. We've learned about the ubiquitous client-server paradigm adopted by Internet applications
and seen itsuseinthe HTTP, FTP, SMTP, POP3 and DNS protocols. We've studied these important
application-level protocols, and their associated applications (the Web, file transfer, e-mail, and the
domain name system) in some detail. We've examined how the socket API can be used to build network
applications and walked through not only the use of sockets over connection-oriented (TCP) and
connectionless (UDP) end-to-end transport services, but also built a simple web server using this API.
Thefirst step in our top-down journey "down" the layered network architecture is complete.

At the very beginning of this book, in section 1.3, we gave arather vague, bare bones definition of a
protocol as defining "the format and the order of messages exchanged between two communicating
entities, aswell as the actions taken on the transmission and/or receipt of amessage.” The material in
this chapter, and in particular the detailed study of the HTTP, FTP, SMTP, POP3 and DNS protocaols,
has now added considerable substance to this definition. Protocols are a key concept in networking; our
study of applications protocols has now given us the opportunity to develop a more intuitive feels for
what protocols are all about.

In Section 2.1 we described the service models that TCP and UDP offer to applications that invoke
them. We took an even closer look at these service models when we devel oped simple applications that
run over TCP and UDP in Sections 2.6-2.7. However, we have said little about how TCP and UDP
provide these service models. For example, we have said very little about how TCP provides areliable
datatransfer service to its applications. In the next chapter we shall take a careful look at not only the
what, but also the how and why, of transport protocols.

Armed with a knowledge about Internet application structure and application-level protocols, we're now
ready to head further down the protocol stack and examine the transport layer in Chapter 3.

Return to Table of Contents

Copyright 1996-2000 Keith W. Ross and James F. Kurose
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Homeowrk Probems for Chapter 2

Review Questions

Section 2.1

1) List five non-proprietary Internet applications and the application-layer protocols that they use.

2) For a communication session between two hosts, which host is the client and which is the server?

3) What information is used by a process running on one host to identify a process running running on
another host?

4) List the various network-application user agents that you use on adaily basis.

5) Referring to Figure 2.1-2, we see that not none of applications listed in the table require both "no data
loss" and "timing". Can you concelve of an application that requires no data loss and that is also highly
time sensitive?

Sections 2.2-2.5
6) What is meant by a handshaking protocol ?
7) Why do HTTP, FTP, SMTP, POP3 and IMAP run on top of TCP rather than UDP?

8) Consider an e-commerce site that wants to keep a purchase record for each of its customers. Describe
how this can be done with HT TP authentication. Describe how this can be done with cookies.

9) What is the difference between persistent HT TP with pipelining and persistent HT TP without
pipelining? Which of thetwo isused by HTTP/1.1?

10) Telnet into a Web server and send a muli-line request message. Include in the request message the
| f-nodi fi ed-si nce: header lineto force aresponse message withthe 304 Not Modi fi ed

status code.

11) Why isit said that FTP sends control information "out of band"?
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12) Suppose Alice with a Web-based e-mail account (such as 'Y ahoo! mail or Hotmail) sends a message
to Bob, who accesses his mail from his mail server using POP3. Discuss how the message gets from
Alice'shost to Bob's host. Be sureto list the series of application-layer protocols that are used to move
the message between the two hosts.

13) Suppose that you send an e-mail message whose only datais a Microsoft Excel attachment. What
might the header lines (including MIME lines) look like?

14) Print out the header of a message that you have recently received. How many Reci eved: header
lines are there? Analyze each of the header linesin the message.

15) From a user's perspective, what is the difference between the downl oad-and-delete mode and the
downl oad-and-keep mode in POP3?

16) Redraw Figure 2.5-4 for when all queries from the local nameserver are iterative.

17) Each Internet host will have at least one local name server and one authoratative name server. What
role does each of these servers havein DNS?

18) Isit possible that an organization's Web server and mail server have exactly the same aliasfor a
hostname (e.g., foo.com)? What would be the "type" for the RR that contains the hostname of the mail
server?

19) Use ndookup to find a Web server that has multiple | P addresses. Does the Web server of your
ingtitution (school, company, etc.) have multiple | P addresses?

Sections 2.6-2.9

20) The UDP server described in Section 2.7 only needed one socket, whereas the TCP server described
in Section 2.6 needed two sockets. Why? If the TCP server were to support n simultaneous connections,
each from a different client host, how many sockets would the TCP server need?

21) For the client-server application over TCP described in Section 2.6, why must the server program be
executed before the client program? For the client-server application over UDP described in Section 2.7,
why may the client program be executed before the server program?

Problems
1) True or false.

a) Suppose a user requests a Web page that consists of some text and two images. For this page
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the client will send one request message and recieve three response messages?

b) True or false. Two distinct Web pages (e.g., www.mit.edu/research.html and www.mit.edu/
students.html) can be sent over the same persistent connection?

¢) With non-persistent connections between browser and origin server, it is possible for asingle
TCP segment to carry two distinct HT TP request messages?

d) The Dat e: header in the HT TP response message indicates when the object in the response
was last modified?

2) Read RFC 959 for FTP. List al of the client commands that are supported by the RFC.

3) Read RFC 1700. What are the well-known port numbers for the "simple file transfer protocol” (sftp)?
For the "network news transfoer protocol" (nntp)?

4) Suppose within your web browser you click on alink to obtain a web page. Suppose that the IP
address for the associated URL is not cached in your local host, so that a DNS look up is necessary to
obtain the I P address. Suppose that n DNS servers are visited before your host receives the | P address
from DNS; the successive visitsincur aRTT of RTTjy, ..., RTT,. Further suppose that web page

associated with the link contains exactly one object, a small amount of HTML text. Let RTT denote the

RTT between the local host and the server containing the object. Assuming zero transmission time of the
object, how much time elapses from when the client clicks on the link until the client receives the object.

5) Referring to question (4), suppose the page contains three very small objects. Neglecting transmission
times, how much time elapses with (a) nonpersistent HTTP with no parallel TCP connections, (b)
nonpersistent HTTP with parallel connections, (c) persistent HTTP with pipelining.

6) Two HTTP request methods are GET and POST. Are there any other methodsin HTTP/1.0? If so,
what are they used for? How about HTTP/1.1 ?

7) Write asimple TCP program for a server that accepts lines of input from a client and prints the lines
onto the server's standard output. (Y ou can do this by modifying the TCPServer.java program in the
text.) Compile and execute your program. On any other machine which contains a Web browser, set the
proxy server in the browser to the machine in which your server program is running; also configure the
port number appropriately. Y our browser should now send its GET request messages to your server, and
your server should display the messages on its standard output. Use this platform to determine whether
your browser generates conditional GET messages for objects that are locally cached.

7) Read the POP3 RFC, RFC 1939. What isthe purpose of the UIDL POP3 command?
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8) Install and compile the Java programs TCPClient and UDPClient on one host and TCPServer and
UDPServer on another host.

a) Suppose you run TCPClient before you run TCPServer. What happens? Why?
b) Suppose you run UDPClient before you run UDPServer. What happens? Why?
c) What happens if you use different port numbers for the client and server sides?

9) Rewrite TCPServer.java so that it can accept multiple connections. (Hint: Y ou will need to use
threads.)

Discussion Questions

1) What is a CGlI script? Give examples of two popular Web sites that use CGI scripts. Explain how
these sites use CGI. Which languages are CGlI scripts typically written in?

2) How can you configure your browser for local caching? What kinds of options do you have?

3) Can you configure your browser to open multiple simultaneous connections to a Web site? What are
the advantages and disadvantages of having alarge number of simultaneous TCP connections?

4) Discussion question: Consider SMTP, POP3 and IMAP. Are these statel ess protocols? Why or why
not?

5) We have seen that Internet TCP sockets treat the data being sent as a byte stream but UDP sockets

recognize message boundaries. What is one advantage and one disadvantage of byte-oriented AP
versus having the API explicitly recognize and preserve application-defined message boundaries?

6) Would it be possible to implement a connection-oriented service (e.g., SMTP or HTTP) on top of a
connectionless service? What would be some of the difficultiesinvolved in doing so, and how could
these be overcome?

Copyright 1996-2000 Keith W. Ross and James F. Kurose
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3.1 Transport Layer Services and Principles

Residing between the application and network layers, the transport layer isin the core of the layered network
architecture. It has the critical role of providing communication services directly to the application processes
running on different hosts. In this chapter we'll examine the possible services provided by atransport layer
protocol and the principles underlying various approaches towards providing these services. We'll also ook
at how these services are implemented and instantiated in existing protocols; as usual, particular emphasis
will be given to the Internet protocols, namely, TCP and UDP transport layer protocols.

In the previous two chapters we have touched on the role of the transport layer and the services that it
provides. Let's quickly review what we have already learned about the transport layer:

. A transport layer protocol providesfor logical communication between application processes running
on different hosts. By "logical" communication, we mean that although the communicating
application processes are not physically connected to each other (indeed, they may be on different
sides of the planet, connected via numerous routers and a wide range of link types), from the
applications viewpoint, it isasif they were physically connected. Application processes use the
logical communication provided by the transport layer to send messages to each other, free for the
worry of the details of the physical infrastructure used to carry these messages. Figure 3.1-1
illustrates the notion of logical communication.

. Asshownin Figure 3.1-1, transport layer protocols are implemented in the end systems but not in
network routers. Network routers only act on the network-layer fields of the layer-3 PDUs; they do
not act on the transport-layer fields.

« At the sending side, the transport layer converts the messagesiit receives from a sending application
process into 4-PDUs (that is, transport-layer protocol data units). Thisis done by (possibly) breaking
the application messages into smaller chunks and adding atransport-layer header to each chunk to
create 4-PDUs. The transport layer then passes the 4-PDUs to the network layer, where each 4-PDU
is encapsulated into a 3-PDU. At the receiving side, the transport layer receives the 4-PDUs from the
network layer, removes the transport header from the 4-PDUSs, reassembl es the messages and passes
them to areceiving application process.

« A computer network can make more than one transport layer protocol available to network
applications. For example, the Internet has two protocols -- TCP and UDP. Each of these protocols
provides a different set of transport layer servicesto the invoking application.

. All trangport layer protocols provide an application multiplexing/demultiplexing service. This service
will be described in detail in the next section. As discussed in Section 2.1, in addition to multiplexing/
demultiplexing service, atransport protocol can possibly provide other servicesto invoking
applications, including reliable data transfer, bandwidth guarantees, and delay guarantees.
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Figure 3.1-1: The transport layer provides logical rather than physical communication between applications.

3.1.1 Relationship between Transport and Network Layers

From the perspective of network applications, the transport layer is the underlying communication
infrastructure. Of course, there is more to the communication infrastructure than just the transport layer. For
example, the network layer liesjust below the transport layer in the protocol stack. Whereas a transport layer
protocol provides logical communication between processes running on different hosts, a network layer
protocol provides logical communication between hosts. This distinction is subtle but important. Let's
examine this distinction with the aid of a household analogy.

Consider two houses, one on the East Coast and the other on the West Coast, with each house being home to
adozen kids. The kids in the East Coast household are cousins with the kids in the West Coast households.
The kids in the two households love to write each other -- each kid writes each cousin every week, with each
letter delivered by the traditional postal service in a separate envelope. Thus, each household sends 144
letters to the other household every week. (These kids would save alot of money if they had e-mail!). In each
of the households thereisonekid -- Alicein the West Coast house and Bob in the East Coast house --
responsible for mail collection and mail distribution. Each week Alice visitsal her brothers and sisters,
collects the mail, and gives the mail to a postal-service mail person who makes daily visits to the house.
When letters arrive to the West Coast house, Alice also has the job of distributing the mail to her brothers and
sisters. Bob has asimilar job on the East coast.

In this example, the postal service provides logical communication between the two houses -- the postal
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service moves mail from house to house, not from person to person. On the other hand, Alice and Bob
provide logical communication between the cousins -- Alice and Bob pick up mail from and deliver mail to,
their brothers and sisters. Note that, from the cousins' perspective, Alice and Bob are the mail service, even
though Alice and Bob are only a part (the end system part) of the end-to-end delivery process. This
household example serves as a hice analogy for explaining how the transport layer relates to the network

layer:

. hosts (also called end systems) = houses

« processes = cousins

. application messages = letters in envelope

. hetwork layer protocol = postal service (including mail persons)
. transport layer protocol = Alice and Bob

Continuing with this analogy, observe that Alice and Bob do all their work within their respective homes,
they are not involved, for example, in sorting mail in any intermediate mail center or in moving mail from
one mail center to another. Similarly, transport layer protocols live in the end systems. Within an end system,
atransport protocol moves messages from application processes to the network edge (i.e., the network layer)
and vice versa; but it doesn't have any say about how the messages are moved within the network core. In
fact, asillustrated in Figure 3.1-1, intermediate routers neither act on, nor recognize, any information that the
transport layer may have appended to the application messages.

Continuing with our family saga, suppose now that when Alice and Bob go on vacation, another cousin pair
-- say, Susan and Harvey -- substitute for them and provide the household-internal collection and delivery of
mail. Unfortunately for the two families, Susan and Harvey do not do the collection and delivery in exactly
the same way as Alice and Bob. Being younger kids, Susan and Harvey pick up and drop off the mail less
frequently and occasionally lose letters (which are sometimes chewed up by the family dog). Thus, the
cousin-pair Susan and Harvey do not provide the same set of services (i.e., the same service model) as Alice
and Baob. In an analogous manner, a computer network may make available multiple transport protocols, with
each protocol offering a different service model to applications.

The possible services that Alice and Bob can provide are clearly constrained by the possible services that the
postal service provides. For example, if the postal service doesn't provide a maximum bound on how long it
can take to deliver mail between the two houses (e.g., three days), then there is no way that Alice and Bob
can guarantee a maximum delay for mail delivery between any of the cousin pairs. In asimilar manner, the
services that atransport protocol can provide are often constrained by the service model of the underlying
network-layer protocol. If the network layer protocol cannot provide delay or bandwidth guarantees for 4-
PDUs sent between hosts, then the transport layer protocol can not provide delay or bandwidth guarantees for
the messages sent between processes.

Nevertheless, certain services can be offered by atransport protocol even when the underlying network
protocol doesn't offer the corresponding service at the network layer. For example, aswe'll seein this
chapter, atransport protocol can offer reliable data transfer service to an application even when the
underlying network protocol is unreliable, that is, even when the network protocol |oses, garbles and
duplicates packets. As another example (which we'll explorein Chapter 7 when we discuss network security),
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atransport protocol can use encryption to guarantee that application messages are not read by intruders, even
when the network layer cannot guarantee the secrecy of 4-PDUs.

3.1.2 Overview of the Transport Layer in the Internet

The Internet, and more generally a TCP/IP network, makes available two distinct transport-layer protocols to
the application layer. One of these protocolsis UDP (User Datagram Protocol), which provides an unreliable,
connectionless service to the invoking application. The second of the these protocolsis TCP (Transmission
Control Protocol), which provides areliable, connection-oriented service to the invoking application. When
designing a network application, the application devel oper must specify one of these two transport protocols.
Aswe saw in Sections 2.6 and 2.7, the application devel oper selects between UDP and TCP when creating
sockets.

To simplify terminology, when in an Internet context, we refer to the 4-PDU as a segment. We mention,
however, that the Internet literature (e.g., the RFCs) also refers to the PDU for TCP as a segment but often
refersto the PDU for UDP as a datagram. But this same Internet literature al so uses the terminology
datagram for the network-layer PDU! For an introductory book on computer networking such as this one, we
believe that it isless confusing to refer to both TCP and UDP PDUs as segments, and reserve the terminology
datagram for the network-layer PDU.

Before preceding with our brief introduction of UDP and TCP, it is useful to say afew words about the
Internet's network layer. (The network layer is examined in detail in Chapter 4.) The Internet's network-layer
protocol has aname -- | P, which abbreviates "Internet Protocol”. IP provides logical communication between
hosts. The | P service model is a best-effort delivery service. This meansthat I|P makesits "best effort” to
deliver segments between communicating hosts, but it makes no guarantees. In particular, it does not
guarantee segment delivery, it does not guarantee orderly delivery of segments, and it does it guarantee the
integrity of the data in the segments. For these reasons, |P is said to be an unreliable service. We also
mention here that every host has an |P address. We will examine |P addressing in detail in Chapter 4; for this
chapter we need only keep in mind that each host has a unique IP address.

Having taken a glimpse at the | P service model, let's now summarize the service model of UDP and TCP.
The most fundamental responsibility of UDP and TCPisto extend IP's delivery service between two end
systems to adelivery service between two processes running on the end systems. Extending host-to-host
delivery to process-to-process delivery is called application multiplexing and demultiplexing. Welll

discuss application multiplexing and demultiplexing in the next section. UDP and TCP aso provide integrity
checking by including error detection fieldsin its header. These two minimal transport-layer services-- host-
to-host data delivery and error checking -- are the only two services that UDP provides! In particular, like |P,
UDP isan unreliable service -- it does not guarantee data sent by one process will arrive in tact to the
destination process. UDP is discussed in detail in Section 3.3.

TCP, on the other hand, offers several additional services to applications.. First and foremost, it provides
reliable data transfer. Using flow control, sequence numbers, acknowledgments and timers (techniques
we'll explorein detail in this Chapter), TCP's guarantee of reliable data transfer ensures that datais delivered
from sending process to receiving process, correctly and in order. TCP thus converts IP's unreliable service
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between end systemsinto areliable data transport service between processes. TCP also uses congestion
control. Congestion control is not so much a service provided to the invoking application asit is a service for
the Internet as awhole -- a service for the general good. In loose terms, TCP congestion control prevents any
one TCP connection from swamping the links and switches between communicating hosts with an excessive
amount of traffic. In principle, TCP permits TCP connections traversing a congested network link to equally
share that link's bandwidth. Thisis done by regulating the rate at which an the sending-side TCPs can send
traffic into the network. UDP traffic, on the other hand, is unregulated. A an application using UDP transport
can send traffic at any rate it pleases, for aslong asit pleases.

A protocol that provides reliable data transfer and congestion control is necessarily complex. We will need
severa sections to cover the principles of reliable data transfer and congestion control, and additional
sections to cover the TCP protocol itself. These topics are investigated in Sections 3.4 through 3.8. The
approach taken in this chapter is to aternative between the basic principles and the TCP protocol. For
example, we first discuss reliable data transfer in a general setting and then discuss how TCP specifically
providesreliable data transfer. Similarly, we first discuss congestion control in a general setting and then
discuss how TCP uses congestion control. But before getting into all this good stuff, let's first look at
application multiplexing and demultiplexing in the next section.

Return to Table of Contents

Copyright 1996-2000 Keith W. Ross and James F. Kurose
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3.2 Multiplexing and Demultiplexing Applications

In this section we discuss the multiplexing/demultiplexing of messages by the transport layer from/to the
application layer. In order to keep the discussion concrete, we'll discuss this basic service in the context of the
Internet's transport layer. We emphasize, however, that multiplexing and demultiplexing services are provided in
amost every protocol architecture ever designed. Moreover, multiplexing/demultiplexing are generic services,
often found in several layers within agiven protocol stack.

Although the multiplexing/demultiplexing service is not among the most exciting services that can be provided by
atransport layer protocal, it is an absolutely critical one. To understand why it so critical, consider the fact that IP
delivers data between two end systems, with each end system identified with aunique | P address. | P does not
deliver data between the application processes that run on these end systems. Extending host-to-host delivery to a
process-to-process delivery isthe job of the transport layer's application multiplexing and demultiplexing service.

At the destination host, the transport layer receives segments (i.e., transport-layer PDUs) from the network layer
just below. The transport layer has the responsibility of delivering the datain these segments to the appropriate
application process running in the host. Let's take alook at an example. Suppose you are sitting in front of your
computer, and you are downloading Web pages while running one FTP session and two Telnet sessions. Y ou
therefore have four network application processes running -- two Telnet processes, one FTP process, and one
HTTP process. When the transport layer in your computer receives data from the network layer below, it needs to
direct the received data to one of these four processes. Let's now examine how thisis done.

Each transport-layer segment has afield that contains information that is used to determine the process to which
the segment's dataisto be delivered. At the receiving end, the transport layer can then examine thisfield to
determine the receiving process, and then direct the segment to that process. Thisjob of delivering the datain a
transport-layer segment to the correct application processis called demultiplexing. The job of gathering data at
the source host from different application processes, enveloping the data with header information (which will later
be used in demultiplexing) to create segments, and passing the segments to the network layer is called
multiplexing.

To illustrate the demultiplexing job, let us return to the household saga in the previous section. Each of the kidsis
distinguished by his or her name. When Bob receives a batch of mail from the mail person, he performs a
demultiplexing operation by observing to whom the |etters are addressed and then hand delivering the mail to his
brothers and sisters. Alice performs a multiplexing operation when she collects letters from her brothers and sisters
and gives the collected mail to the mail person.

UDP and TCP perform the demultiplexing and multiplexing jobs by including two special fields in the segment
headers: the source port number field and the destination port number field. These two fields areillustrated in
Figure 3.2-1. When taken together, the fields uniquely identify an application process running on the destination
host. (The UDP and TCP segments have other fields as well, and they will be addressed in the subsequent sections
of this chapter.)
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Figure 3.2-1: Source and destination port number fields in atransport layer segment.

The notion of port numbers was briefly introduced in Sections 2.6-2.7, in which we studied application
development and socket programming. The port number is a 16-bit number, ranging from from 0 to 65535. The
port numbers ranging from O - 1023 are called well-known port number s and are restricted, which means that
they are reserved for use by well-known application protocols such asHTTP and FTP. HTTP uses port number 80;
FTP uses port number 21. The list of well-known port numbersis given in [RFC 1700]. When we develop a new
application (such as one of the applications developed in Sections 2.6-2.8), we must assign the application a port
number.

Given that each type of application running on an end system has a unique port number, then why isit that the
transport-layer segment has fields for two port numbers, a source port number and a destination port number? The
answer issimple: An end system may be running two processes of same type at the same time, and thus the port
number of an application may not suffice to identify a specific process. For example, many Web servers spawn a
new HTTP process for every request it receives, whenever such aWeb server is servicing more than one request
(which is by no means uncommon), the server is running more than one process with port number 80. Therefore,
in order to uniquely identify processes, a second port number is needed.

How isthis second port number created? Which port number goes in the source port number field of a segment?
Which goesin the destination port number field of a segment? To answer these questions, recall from Section 2.1
that networked applications are organized around the client-server model. Typicaly, the host that initiates the
application is the client and the other host is the server. Now let's ook at a specific example. Suppose the
application has port number 23 (the port number for Telnet). Consider a transport layer segment leaving the client
(i.e., the host that initiated the Telnet session) and destined for the server. What are the destination and source port
numbers for this segment? For the destination port number, this segment has the port number of the application,
namely, 23. For the source port number, the client uses a number that is not being used by any of its other
processes. (Thisis can be done automatically by the transport-layer software running on the client and is
transparent to the application developer. An application can also explicitly request a specific port number using the
bi nd() system call on many Unix-like systems.) Let's say the client chooses port number x. Then each segment
that this process sends will have its source port number set to x and destination port number set to 23. When the
segment arrives at the server, the source and destination port numbers in the segment enable the server host to pass
the data of the segment to the correct application process. the destination port number 23 identifies a Telnet
process and the source port number x identifies the specific Telnet process.

The situation is reversed for the segments flowing from the server to the client. The source port number is now the
application port number, 23. The destination port number is now X. (The same x used for the source port number
for the segments sent from client to server.) When a segment arrives at the client, the source and destination port
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numbers in the segment will enable the client host to pass the data of the segment to the correct application
process, which is identified by the port number pair. Figure 3.2-2 summarizes the discussion:

Telnet )

Zlient Senser

HosT A Host B
= LSouce Pot = x Lource Port = 23 =
T T
5 Destinction Port = 23 - Destination Port = x g“
4] 4]
O - .

Figure 3.2-2: Use of source and destination port numbersin aclient-server application

Now you may be wondering, what happensiif two different clients establish a Telnet session to a server, and each
of these clients choose the same source port number x? How will the server be able to demultiplex the segments
when the two sessions have exactly the same port number pair? The answer to this question is that server also uses
the IP addresses in the | P datagrams carrying these segments. (We will discuss | P datagrams and addressing in
detail in Chapter 4.) The situation isillustrated in Figure 3.2-3, in which host A initiates two Telnet sessions to
host C, and host A initiates one Telnet session to host C. Hosts A, B and C each have their own unique IP address;
host A has |P address A, host B has IP address B, and host C has IP address C. Host A assigns two different source
port (SP) numbers (x and y) to the two Telnet connections emanating from host A. But because host B is choosing
source port numbersindependently from A, it can also assign SP=x to its Telnet connection. Nevertheless, host C
isstill able to demultiplex the two connections since the two connections have different source | P addresses. In
summary, we see that when a destination host receives data from the network layer, the triplet [source | P address,
source port number, destination port number] is used to forward the data to the appropriate process.
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client host A with two
Telnet connections to host C

. server host C supporting
Pt three Telnet connections

client host B with one Telnet
connection to host C

Figure 3.2-3: Two clients, using the same port numbers to communicate with the same server application

Now that we understand how the transport layer can multiplex and demultiplex messages from/to network
applications, let's move on and discuss one of the Internet's transport protocols, UDP. In the next section we shall
see that UDP adds little more to the network layer protocol than multiplexing/demultiplexing service.
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3.3 Connectionless Transport: UDP

The Internet makes two transport protocols available to its applications, UDP and TCP. In this section
we take aclose look at UDP: how it works and what it does. The reader is encouraged to refer back to
material in Section 2.1, which includes an overview of the UDP service model, and to the material in
Section 2.7, which discusses socket programming over UDP.

To motivate our discussion about UDP, suppose you were interested in designing a no-frills, bare-bones
transport protocol. How might you go about doing this? Y ou might first consider using a vacuous
transport protocol. In particular, on the sending side, you might consider taking the messages from the
application process and passing them directly to the network layer; and on the receiving side, you might
consider taking the messages arriving from the network layer and passing them directly to the
application process. But as we learned in the previous section, we have to do alittle more than nothing.
At the very least, the transport layer must provide a multiplexing/demultiplexing service in order to pass
data between the network layer and the correct application.

UDP, defined in [RFC 768], does just about as little as a transport protocol can. Aside from the
multiplexing/demultiplexing function and some light error checking, it adds nothing to IP. In fact, if the
application developer chooses UDP instead of TCP, then the application istalking almost directly with
|P. UDP takes messages from application process, attaches source and destination port number fields for
the multiplexing/demultiplexing service, adds two other fields of minor importance, and passes the
resulting "segment” to the network layer. The network layer encapsulates the segment into an |P
datagram and then makes a best-effort attempt to deliver the segment to the receiving host. If the
segment arrives at the receiving host, UDP uses the port numbers and the I P source and destination
addresses to deliver the datain the segment to the correct application process. Note that with UDP there
Is no handshaking between sending and receiving transport-layer entities before sending a segment. For
this reason, UDP is said to be connectionless.

DNSisan example of an application-layer protocol that uses UDP. When the DNS application (see
section 2.5) in ahost wants to make a query, it constructs a DNS query message and passes the message
to a UDP socket (see Section 2.7). Without performing any handshaking, UDP adds a header fieldsto
the message and passes the resulting segment to the network layer. The network layer encapsul ates the
UDP segment into a datagram and sends the datagram to a name server. The DNS application at the
guerying host then waits for areply to its query. If it doesn't receive areply (possibly because UDP lost
the query or thereply), it either tries sending the query to another nameserver, or it informs the invoking
application that it can't get areply. We mention that the DNS specification permits DNS to run over
TCP instead of UDP; in practice, however, DNS amost always runs over UDP.

Now you might be wondering why an application developer would ever choose to build an application
over UDP rather than over TCP. Isn't TCP always preferable to UDP since TCP provides areliable data
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transfer service and UDP does not? The answer is no, as many applications are better suited for UDP for
the following reasons:

« No connection establishment. Aswe shall discussin Section 3.5, TCP uses a three-way
handshake before it startsto transfer data. UDP just blasts away without any formal
preliminaries. Thus UDP does not introduce any delay to establish a connection. Thisis probably
the principle reason why DNS runs over UDP rather than TCP -- DNS would be much slower if it
ran over TCP. HTTP uses TCP rather than UDP, since reliability is critical for Web pages with
text. But, aswe briefly discussed in Section 2.2, the TCP connection establishment delay in
HTTP is an important contributor to the "world wide wait".

. No connection state. TCP maintains connection state in the end systems. This connection state
includes receive and send buffers, congestion control parameters, and sequence and
acknowledgment number parameters. We will seein Section 3.5 that this state information is
needed to implement TCP's reliable data transfer service and to provide congestion control. UDP,
on the other hand, does not maintain connection state and does not track any of these parameters.
For this reason, a server devoted to a particular application can typically support many more
active clients when the application runs over UDP rather than TCP.

. Small segment header overhead. The TCP segment has 20 bytes of header overhead in every
segment, whereas UDP only has 8 bytes of overhead.

. Unregulated send rate. TCP has a congestion control mechanism that throttles the sender when
one or more links between sender and receiver becomes excessively congested. Thisthrottling
can have a severe impact on real-time applications, which can tolerate some packet 1oss but
require a minimum send rate. On the other hand, the speed at which UDP sends datais only
constrained by the rate at which the application generates data, the capabilities of the source
(CPU, clock rate, etc.) and the access bandwidth to the Internet. We should keep in mind,
however, that the receiving host does not necessarily receive all the data- when the network is
congested, asignificant fraction of the UDP-transmitted data could be lost due to router buffer
overflow. Thus, the receive rate is limited by network congestion even if the sending rate is not
constrained.

Table 3.1-1 lists popular Internet applications and the transport protocols that they use. As we expect, e-
mail, remote terminal access, the Web and file transfer run over TCP -- these applications need the
reliable data transfer service of TCP. Nevertheless, many important applications run over UDP rather
TCP. UDPisused for RIP routing table updates (see Chapter 4 on the network layer), because the
updates are sent periodically, so that lost updates are replaced by more up-to-date updates. UDP is used
to carry network management (SNMP - see Chapter 8) data. UDP is preferred to TCPin this case, since
network management must often run when the network isin a stressed state - precisely when reliable,
congestion-controlled data transfer is difficult to achieve. Also, as we mentioned earlier, DNS runs over
UDP, thereby avoiding TCP's connection establishment delays.

Application Application-layer protocol |Underlying Transport Protocol
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electronic mail SMTP TCP
remote terminal access |Telnet TCP
Web HTTP TCP
file transfer FTP TCP
remote file server NFS typicaly UDP
streaming multimedia |proprietary typicaly UDP
Internet telephony proprietary typically UDP
Network Management (SNMP typicaly UDP
Routing Protocol RIP typically UDP
Name Translation DNS typically UDP

Figure 3.1-1: Popular Internet applications and their underlying transport protocols.

Asshown in Figure 3.1-1, UDPis aso commonly used today with multimedia applications, such as
Internet phone, real-time video conferencing, and streaming of stored audio and video. We shall take a
close look at these applications in Chapter 6. We just mention now that all of these applications can
tolerate a small fraction of packet loss, so that reliable data transfer is not absolutely critical for the
success of the application. Furthermore, interactive real-time applications, such as Internet phone and
video conferencing, react very poorly to TCP's congestion control. For these reasons, devel opers of
multimedia applications often choose to run the applications over UDP instead of TCP. Finally, because
TCP cannot be employed with multicast, multicast applications run over UDP.

Although commonly done today, running multimedia applications over UDP is controversial to say the
least. As we mentioned above, UDP lacks any form of congestion control. But congestion control is
needed to prevent the network from entering a congested state in which very little useful work is done. If
everyone were to start streaming high bit-rate video without using any congestion control, there would
be so much packet overflow at routers that no one would see anything. Thus, the lack of congestion
control in UDP is a potentially serious problem. Many researchers have proposed new mechanismsto
force all sources, including UDP sources, to perform adaptive congestion control [Mahdavi].

Before discussing the UDP segment structure, we mention that it is possible for an application to have
reliable data transfer when using UDP. This can be done if reliability is built into the application itself (e.
g., by adding acknowledgement and retransmission mechanisms, such as those we shall study in the next
section). But this anon-trivial task that would keep an application devel oper busy debugging for along
time. Nevertheless, building reliability directly into the application allows the application to "have its
cake and eat it too" -- that is, application processes can communicate reliably without being constrained
by the transmission rate constraints imposed by TCP's congestion control mechanism. Application-level
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reliability also allows an application to tailor its own application-specific form of error control. An
interactive real-time may occasionally choose to retransmit alost message, provided that round trip
network delays are small enough to avoid adding significant playout delays [ Papadopoul os 1996].

Many of today's proprietary streaming applications do just this -- they run over UDP, but they have built
acknowledgements and retransmissions into the application in order reduce packet |oss.

UDP Segment Structure

The UDP segment structure, shown in Figure 3.3-2, is defined in [RFC 768].

—— 32 pifs ——»~

aource Por Destination Port

Length UDP Checksum

Bla|le

Figure 3.3-2: UDP segment structure

The application data occupies the data field of the UDP datagram. For example, for DNS, the data field
contains either a query message or a response message. For a streaming audio application, audio samples
fill the datafield. The UDP header has only four fields, each consisting of four bytes. Asdiscussed in

the previous section, the port numbers alow the destination host to pass the application data to the
correct process running on that host (i.e., perform the demultiplexing function). The checksum is used

by the receiving host to check if errors have been introduced into the segment during the course of its
transmission from source to destination. (Basic principles of error detection are described in Section
5.2).

UDP Checksum

The UDP checksum provides for error detection. UDP at the sender side performs the one's complement
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of the sum of all the 16-bit wordsin the segment. Thisresult is put in the checksum field of the UDP
segment. (In truth, the checksum is also calculated over afew of thefieldsin the P header in addition to
the UDP segment. But we ignore this detail in order to see the forest through the trees.) When the
segment arrives (if it arrives!) at the receiving host, all 16-bit words are added together, including the
checksum. If thissum equals1111111111111111, then the segment has no detected errors. If one of the
bitsis azero, then we know that errors have been introduced into the segment.

Here we give a simple example of the checksum calculation. Y ou can find details about efficient
implementation of the calculation in the [RFC 1071]. As an example, suppose that we have the

following three 16-bit words:

0110011001100110
0101010101010101
0000111100001111

The sum of first of these 16-bit wordsis:

0110011001100110
0101010101010101

1011101110111011

Adding the third word to the above sum gives

1011101110111011
0000111100001111

1100101011001010

The 1's complement is obtained by converting all the Osto 1s and converting al the 1sto 0s. Thusthe 1's
complement of the sum 1100101011001010 is 0011010100110101, which becomes the checksum. At
the receiver, all four 16-bit words are added, including the checksum. If no errors are introduced into the
segment, then clearly the sum at the receiver will be 1111111111111111. If one of the bitsis a zero, then
we know that errors have been introduced into the segment. In section 5.1, we'll see that the Internet
checksum is not foolproof -- even if the sum equals 111111111111111, it is still possible that there are
undetected errors in the segment. For this reason, a number of protocols use more sophisticated error
detection techniques than simple checksumming.

Y ou may wonder why UDP provides a checksum in the first place, as many link-layer protocols
(including the popular Ethernet protocol) also provide error checking? The reason is that thereis no
guarantee that all the links between source and destination provide error checking -- one of the links
may use a protocol that does not provide error checking. Because IP is supposed to run over just about
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any layer-2 protocol, it is useful for the transport layer to provide error checking as a safety measure.
Although UDP provides error checking, it does not do anything to recover from an error. Some
implementations of UDP simply discard the damaged segment; others pass the damaged segment to the
application with awarning.

That wraps up our discussion of UDP. We will soon see that TCP offers reliable data transfer to its
applications as well as other servicesthat UDP doesn't offer. Naturally, TCP is also more complex than
UDP. Before discussing TCP, however, it will be useful to step back and first discuss the underlying
principles of reliable data transfer, which we do in the subsequent section. We will then explore TCP in
Section 3.5, where we will see that TCP has it foundations in these underlying principles.
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Principle of Reliable Data Transfer

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general context. Thisis appropriate since the problem of
implementing reliable data transfer occurs not only at the transport layer, but also at the link layer and the application layer as well.
The general problem is thus of central importance to networking. Indeed, if one had to identify a " "top-10" list of fundamentally
important problemsin all of networking, this would be atop candidate to lead that list. In the next section we will examine TCP
and show, in particular, that TCP exploits many of the principles that we are about to describe.

C
O
g O
QO C>)‘ sending receiver
% - process process
O i |dqfq' t
= L()reliclble chc:rmel)j ret_send() deliver data()
8_ 0 reliable data
> ; ( fransfer protocol
S ®) (sending side) (receiving side)
-+~ udt_send()i [packet| [ packet| Irdt rev()
T—b()unrelic:ble c:hcmnel)iA
(0) provided service (b) service implementation

Figure 3.4-1: Reliable datatransfer: service model and service implementation.

Figure 3.4-1 illustrates the framework for our study of reliable data transfer. The service abstraction provided to the upper layer
entitiesisthat of areliable channel through which data can be transferred. With areliable channel, no transferred data bits are
corrupted (flipped from 0 to 1, or vice versa) or lost, and all are delivered in the order in which they were sent. Thisis precisely
the service model offered by TCP to the Internet applications that invokeit.

It isthe responsibility of areliable data transfer protocol to implement this service abstraction. This task is made difficult by
the fact that layer below the reliable data transfer protocol may be unreliable. For example, TCP is areliable data transfer protocol
that is implemented on top of an unreliable (1P) end-end network layer. More generally, the layer beneath the two reliably-
communicating endpoints might consist of asingle physical link (e.g., asin the case of alink-level datatransfer protocol) or a
global internetwork (e.g., asin the case of atransport-level protocol). For our purposes, however, we can view this lower layer
simply as an unreliable point-to-point channel.

In this section, we will incrementally develop the sender and receiver sides of areliable data transfer protocol, considering
increasingly complex models of the underlying channel. Figure 3.4-1(b) illustrates the interfaces for our data transfer protocol. The
sending side of the data transfer protocol will be invoked from above by acall tor dt _send() . It will be passed the data to be
delivered to the upper-layer at the receiving side. (Herer dt standsfor "reliable datatransfer” protocol and _send indicates that
the sending side of r dt isbeing called. Thefirst step in developing any protocol isto choose a good name!) On the receiving side,
rdt _rcv() will becaled when apacket arrives from the receiving side of the channel. Whenther dt protocol wants to deliver
datato the upper-layer, it will do so by calling del i ver _dat a() . In the following we use the terminology "packet” rather than
"segment” for the protocol data unit.. Because the theory developed in this section applies to computer networksin general, and
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not just to the Internet transport layer, the generic term "packet” is perhaps more appropriate here.

In this section we consider only the case of unidirectional datatransfer, i.e., data transfer from the sending to receiving side. The
case of reliable bidirectional (i.e., full duplex) datatransfer is conceptually no more difficult but considerably more tedious.
Although we consider only unidirectional data transfer, it isimportant to note that the sending and receiving sides of our protocol
will nonetheless need to transmit packets in both directions, asindicated in Figure 3.4-1. We will see shortly that in addition to
exchanging packets containing the data to be transferred, the sending and receiving sides of r dt  will also need to exchange
control packets back and forth. Both the send and receive sides of r dt send packets to the other side by acall toudt _send()
(unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol

Reliable Data Transfer over a Perfectly Reliable Channel: rdt 1. 0

We first consider the smplest case in which the underlying channel is completely reliable. The protocol itself, which we will call
rdt 1. 0, istrivia. Thefinite state machine (FSM) definitions for ther dt 1. O sender and receiver are shown in Figure 3.4-2.
The sender and receiver FSMs in Figure 3.4-2 each have just one state. The arrows in the FSM description indicate the transition
of the protocol from one state to another. (Since each FSM in Figure 3.4-2 has just one state, a transition is necessarily from the
one state back to itself; we'll see more complicated state diagrams shortly.). The event causing the transition is shown above the
horizontal line labeling the transition, and the action(s) taken when the event occurs are shown below the horizontal line.

The sending side of r dt simply accepts data from the upper-layer viather dt _send( dat a) event, puts the data into a packet
(viathe action make_pkt ( packet, dat a) ) and sends the packet into the channel. In practice, ther dt _send( dat a) event
would result from a procedure call (e.g., tor dt _send() ) by the upper layer application.

Onthereceiving side, r dt receives a packet from the underlying channel viather dt _r cv( packet ) event, removesthe data
from the packet (viathe action ext r act ( packet , dat a) ) and passes the data up to the upper-layer. In practice, ther dt _rcv
(packet ) event would result from a procedure call (e.g.,tor dt _r cv() ) from the lower layer protocol.

In this simple protocol, there is no difference between a unit of data and a packet. Also, all packet flow isfrom the sender to
receiver - with a perfectly reliable channel there is no need for the receiver side to provide any feedback to the sender since nothing
can go wrong!

rdt_send(data) rdt_rcv(packet)

extract(packet,data)

make_pkt(packet,data)
deliver_data(data)

udt_send(packet)

(a) rdt1.0; sending side (b) rdt1.0: receiving side

Figure3.4-2: r dt 1. O - aprotocol for acompletely reliable channel
Reliable Data Transfer over a Channel with Bit Errors: rdt 2. 0

A morerealistic model of the underlying channel is one in which bitsin a packet may be corrupted. Such bit errors typically occur
in the physical components of a network as a packet is transmitted, propagates, or is buffered. We'll continue to assume for the
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moment that all transmitted packets are received (although their bits may be corrupted) in the order in which they were sent.

Before devel oping a protocol for reliably communicating over such a channel, first consider how people might deal with such a
situation. Consider how you yourself might dictate along message over the phone. In atypical scenario, the message taker might
say OK" after each sentence has been heard, understood, and recorded. If the message taker hears a garbled sentence, you're
asked to repeat the garbled sentence. This message dictation protocol uses both positive acknowledgements (""OK") and negative
acknowledgements (" Please repeat that"). These control messages allow the receiver to let the sender know what has been
received correctly, and what has been received in error and thus requires repeating. In a computer network setting, reliable data
transfer protocols based on such retransmission are known ARQ (Automatic Repeat reQuest) protocols.

Fundamentally, two additional protocol capabilities are required in ARQ protocols to handle the presence of bit errors:

. Error detection. First, amechanism is needed to alow the receiver to detect when bit errors have occurred. Recall from
Sections 3.3 that the UDP transport protocol uses the Internet checksum field for exactly this purpose. In Chapter 5 wel'll
examine error detection and correction techniques in greater detail; These techniques allow the receiver to detect, and
possibly correct packet bit errors. For now, we need only know that these techniques require that extra bits (beyond the bits
of original datato be transferred) be sent from the sender to receiver; these bits will be gathered into the packet checksum
field of ther dt 2. O data packet.

. Receiver feedback. Since the sender and receiver are typically executing on different end systems, possibly separated by
thousands of miles, the only way for the sender to learn of the receiver's view of the world (in this case, whether or not a
packet was received correctly) is for the receiver to provide explicit feedback to the sender. The positive (ACK) and
negative acknowledgement (NAK) replies in the message dictation scenario are an example of such feedback. Our r dt 2. 0
protocol will similarly send ACK and NAK packets back from the receiver to the sender. In principle, these packets need
only be one bit long, e.g., azero value could indicate aNAK and a value of 1 could indicate an ACK.

Figure 3.4-3 showsthe FSM representation of r dt 2. 0, adata transfer protocol employing error detection, positive
acknowledgements (ACKs), and negative acknowledgements (NAKS).

The send side of r dt 2. 0 hastwo states. In one state, the send-side protocol iswaiting for data to be passed down from the upper
layer. In the other state, the sender protocol iswaiting for an ACK or aNAK packet from the receiver. If an ACK packet is
received (thenotationr dt _rcv(rcvpkt) && i sSACK(rcvpkt) inFigure3.4-3 correspondsto this event), the sender knows
the most recently transmitted packet has been received correctly and thus the protocol returns to the state of waiting for data from
the upper layer. If aNAK isreceived, the protocol retransmits the last packet and waits for an ACK or NAK to be returned by the
receiver in response to the retransmitted data packet. It isimportant to note that when the receiver isin the wait-for-ACK-or-NAK
state, it can not get more data from the upper layer; that will only happen after the sender receives an ACK and leaves this state.
Thus, the sender will not send a new piece of data until it is sure that the receiver has correctly received the current packet.
Because of this behavior, protocolssuch asr dt 2. 0 are known as stop-and-wait protocols.

Thereceiver-side FSM for r dt 2. O still has asingle state. On packet arrival, the receiver replies with either an ACK or aNAK,

depending on whether or not the received packet is corrupted. In Figure 3.4-3, the notation rdt _rcv(rcvpkt) && corrupt
(rcvpkt) correspondsto the event where a packet is received and is found to bein error.
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rdf_send(data) rat_rev(revpkt) &&
compute checksum corrupt(rcvpkt)
make_pki(sndpkt, data, checksum)

udt sénd(snapki) udf_send(NACK]

rdt_rcv(rcvpkt)
&& isNACK(rcvpkt) _
wait for

udt send(sndpkt) call from

wait for
call from
above

below

rdf_rcv(rcvpkt)
&& ISACK(revpkt)

rdf_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt, datq)
deliver_data(data)
udt send(ACK)

(@) rdt2.0: sending side

(b) rdf2.0: receiving side

Figure3.4-3: rdt 2. 0 - aprotocol for achannel with bit-errors

Protocol r dt 2. 0 may look asif it works but unfortunately has afatal flaw. In particular, we haven't accounted for the possibility
that the ACK or NAK packet could be corrupted! (Before proceeding on, you should think about how this problem may be fixed.)
Unfortunately, our slight oversight is not asinnocuous as it may seem. Minimally, we will need to add checksum bitsto ACK/
NAK packets in order to detect such errors. The more difficult question is how the protocol should recover from errorsin ACK or
NAK packets. The difficulty hereisthat if an ACK or NAK is corrupted, the sender has no way of knowing whether or not the
receiver has correctly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKs:

. For thefirst possibility, consider what a human might do in the message dictation scenario. If the speaker didn't understand
the "OK" or ~"Please repeat that" reply from the receiver, the speaker would probably ask “"What did you say?" (thus
introducing a new type of sender-to-receiver packet to our protocol). The speaker would then repeat the reply. But what if
the speaker's "What did you say" is corrupted? The receiver, having no idea whether the garbled sentence was part of the
dictation or arequest to repeat the last reply, would probably then respond with ““What did you say?* And then, of course,
that response might be garbled. Clearly, we're heading down a difficult path.

. A second alternative isto add enough checksum bits to allow the sender to not only detect, but recover from, bit errors. This
solves the immediate problem for a channel which can corrupt packets but not lose them.

. A third approach is for the sender to simply resend the current data packet when it receives agarbled ACK or NAK packet.
This, however, introduces duplicate packets into the sender-to-receiver channel. The fundamental difficulty with duplicate
packets is that the receiver doesn't know whether the ACK or NAK it last sent was received correctly at the sender. Thus, it
can not know a priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in aimost all existing data transfer protocolsincluding TCP) isto add a
new field to the data packet and have the sender number its data packets by putting a sequence number into thisfield. The
receiver then need only check this sequence number to determine whether or not the received packet is a retransmission. For this
simple case of a stop-and-wait protocol, a 1-bit sequence number will suffice, since it will alow the receiver to know whether the
sender is resending the previously transmitted packet (the sequence number of the received packet has the same sequence number
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as the most recently received packet) or a new packet (the sequence number changes, i.e., moves "~ “forward" in modulo 2

arithmetic). Since we are currently assuming a channel that does not lose packets, ACK and NAK packets do not themselves need
to indicate the sequence number of the packet they are ACKing or NAKing, since the sender knows that a received ACK or NAK

packet (whether garbled or not) was generated in response to its most recently transmitted data packet.

rdt_send(data)

compute chksum
make pki(sndpkt,0,data,chksum)
udt_send(sndpkt)

rdt rev(revpkt) &&
( corupt{rcvpkt) | |
isNAK(rcvpkt) )

udt_send(sndpki)

rdt rcv(revpkt)
&& notcorrupt(revpkt)

rdt rcv(rcvpkt)
&& isACK(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(revpkt) &&
( corupt({rcvpkt) | |
isNAK(rcvpkt) )

udt send(sndpkt)

radt send(datal)

compute chksum
make pkt(sndpkt, 1,data,chksum)
udt_send(sndpkt)

Figure3.4-4: rdt 2. 1 sender
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rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(revpkt, data)
deliver data(data)
compute chksum
rat rev(revpkd) make pki(sendpkt, ACK,chksum)

&& corrupt(rcvpkd) udt_send(sndki)
compute chksum

make pki(sndpkt,NAK,c
udt send(sndpkt)

rdt rev(revpkt)
&& corrupt(rcvpkt)

compute chksum
make pki(sndpkt, NAK,chksum)
udt_send(sndpkt)

rat rev(revpkt)
&& notcorrupt(revpkt)
&& has_seqO(rcvpkd)

rdt_rcv(revpkt)
&& notcorrupt(rcvpkt)
&& has_seql(rcvpki)

rdt rev(revpkt)

compute chksum

compute chksum && notcorrupt(revpkt)
make pkt(sndpkt, ACK,chksum) && has seql(rcvpki) umdc?kseér?lé’[[ssnnggklfr’;,ACK,Chksum)
udt_send(sndpki) exfract(rcvpkt,data) -

deliver_data(datal)

compute chksum
make_pki(sendpkt, ACK,chksum)
udt_send(sndpkt)

Figure 3.4-5: r dt 2. 1 recevier

Figures 3.4-4 and 3.4-5 show the FSM description for r dt 2. 1, our fixed version of r dt 2. 0. Ther dt 2. 1 sender and receiver
FSM's each now have twice as many states as before. Thisis because the protocol state must now reflect whether the packet
currently being sent (by the sender) or expected (at the receiver) should have a sequence number of O or 1. Note that the actionsin
those states where a O-numbered packet is being sent or expected are mirror images of those where a 1-numbered packet is being
sent or expected; the only differences have to do with the handling of the sequence number.

Protocol rdt2.1 uses both positive and negative acknowledgements from the receiver to the sender. A negative acknowledgement
is sent whenever a corrupted packet, or an out of order packet, is received. We can accomplish the same effect asaNAK if instead
of sending aNAK, we instead send an ACK for the last correctly received packet. A sender that receivestwo ACKsfor the same
packet (i.e., receives duplicate ACK s) knows that the recevier did not correctly receive the packet following the packet that is
being ACKed twice. Many TCP implementations use the receipt of so-called "triple duplicate ACKS" (three ACK packets all
ACK'ing the same packet) to trigger aretransmission at the sender. Our NAK-free reliable data transfer protocol for a channel
with bit errorsisr dt 2. 2, shown in Figure 3.4-6 and 3.4-7.
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rdt_send(data)

compute chksum

make_pktsndpkt,0.data,chksum)
udt_send{sndpkt)

rdt_rcv(revpkt) &&
( corrupt(revpkd) ||
isSACK(revpkt, 1) )

udt_send(sndpkt)

rdt_rev(revpkt)

&& notcorrupt(revpkt)

rdt_rev(rcvpkt)
&& isACK(rcvpkt,1)

&& notcorrupt(revpkd)
&& isACK(rcvpkt 0)

rdt_rcv(rcvpkt) &&
(corrupt(revpkt) |
isSACK(revpkt,0) )

udt_send(sndpkt)

rdt_send{data)

compute chksum

make_pkt(sndpkt,1,data,chksum)
udt_send(sndpkt)

Figure 3.4-6: r dt 2. 2 sender
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rdt_rev(revpkt)
&& notcorrupt(revikt)
&& has seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

compute chksum
make_pki(sendpkt, ACKO,chksum)
udt_send(sndpki)

-~

rdt rev(rcvpkt)
&& (corrupt(revpekt) | |
has seqO(rcvpkd) )

udt_send(sndpkt)

rdt rcv(rcvpkt)
&& (comupt(rcvpkt) | |
has seql(revkt) )

udt_send(sndpkt)

wait for
0 from
below

wait for
1 from
below

rdt rcv(rcvpkd)
&& notcorrupt(rcvpkt)
&& has seql(rcvpki)

extract{rcvpkt, data)
deliver_data(data)

compute chksum

make pkt(sendpkt, ACKT,chksum)
udt send(sndpkt)

Figure3.4-7: r dt 2. 2 receiver
Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt 3. 0

Suppose now that in addition to corrupting bits, the underlying channel can lose packets as well, a not uncommon event in today's
computer networks (including the Internet). Two additional concerns must now be addressed by the protocol: how to detect packet
loss and what to do when this occurs. The use of checksumming, sequence numbers, ACK packets, and retransmissions - the
techniques already developed inr dt 2. 2 - will alow usto answer the latter concern. Handling the first concern will require
adding a new protocol mechanism.

There are many possible approaches towards dealing with packet loss (several more of which are explored in the exercises at the
end of the chapter). Here, welll put the burden of detecting and recovering from lost packets on the sender. Suppose that the sender
transmits a data packet and either that packet, or the receiver's ACK of that packet, getslost. In either case, no reply is forthcoming
at the sender from the receiver. If the sender iswilling to wait long enough so that it is certain that a packet has been logt, it can
simply retransmit the data packet. Y ou should convince yourself that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost? It must clearly wait at |east aslong as around trip
delay between the sender and receiver (which may include buffering at intermediate routers or gateways) plus whatever amount of
time is needed to process a packet at the receiver. In many networks, this worst case maximum delay is very difficult to even
estimate, much less know with certainty. Moreover, the protocol should ideally recover from packet loss as soon as possible;
waiting for aworst case delay could mean along wait until error recovery isinitiated. The approach thus adopted in practiceis for
the sender to “judiciously" chose atime value such that packet lossis likely, although not guaranteed, to have happened. If an
ACK isnot received within this time, the packet is retransmitted. Note that if a packet experiences a particularly large delay, the
sender may retransmit the packet even though neither the data packet nor its ACK have been lost. This introduces the possibility of
duplicate data packetsin the sender-to-receiver channel. Happily, protocol r dt 2. 2 aready has enough functionality (i.e.,
sequence numbers) to handle the case of duplicate packets.
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From the sender's viewpoint, retransmission is a panacea. The sender does not know whether a data packet was lost, an ACK was
lost, or if the packet or ACK was simply overly delayed. In all cases, the action is the same: retransmit. In order to implement a
time-based retransmission mechanism, a countdown timer will be needed that can interrupt the sender after a given amount of
timer has expired. The sender will thus need to be able to (i) start the timer each time a packet (either afirst time packet, or a
retransmission) is sent, (ii) respond to atimer interrupt (taking appropriate actions), and (iii) stop the timer.

The existence of sender-generated duplicate packets and packet (data, ACK) loss also complicates the sender's processing of any
ACK packet it receives. If an ACK isreceived, how isthe sender to know if it was sent by the receiver in response to its (sender's)
own most recently transmitted packet, or isadelayed ACK sent in response to an earlier transmission of a different data packet?
The solution to this dilemmais to augment the ACK packet with an acknowledgement field. When the receiver generates an
ACK, it will copy the sequence number of the data packet being ACK'ed into this acknowledgement field. By examining the
contents of the acknowledgment field, the sender can determine the sequence number of the packet being positively
acknowledged.

rdt_send(datc)

compute chksum rdt_rcv(rcvpkt) &&

make_pkt(sndpkt,0.data.chksum (corrupt(rcvpkt) 1 |
udT_sér?d(gndprd) ) isACK(rcvpkt, 1) )
start_timer

rdt_rev(rcvpkt)

timeout

udt_send(sndpk?)
) start_timer

rdt_rev(rcvpkh)
&& notcorrupt(revpkt
&& iIsACK(rcvpkt,1)

radt_rev(revpkt)
&& notcorrupt(rcvpkd
&& isACK(rcvpkt,0)

timeout

udt_send{sndpki
start_timer

rat_rcv(rcvpkt)

rdt_rev(rcvpkt) &&
(QorrupT(rcvka) [ radt_send{(data)
ISACK(revikt.0)) compute chksum

make_pki(sndpkt,1 data,chksum)
udt_send(sndpkt)
start_timer

Figure3.4-8: rdt 3.0 sender FSM
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sender receiver
okt
send kaO 0 rev pki0
send ACKO
rcv ACKO ‘)/
send pkﬂ
rcv ki
send ACKI
revACK]
send pktt kt O
rcv pkt0
send ACKO

(a) operation with no loss

sender

receiver

okt
send pki0 \O> rev pkito

rcv ACKO
send pki

fimeout
resend pktT

revACK]

send ACKT
send pktO <
/ e

y send ACKO

k’r]
\Kb((loss)

pkt ]
rcv okt 1

send ACKO

(b) lost packet

sender receiver sender receiver
okt kt
send pkt0 N} rev pkio send pktO %’ rev pkt0
ACK send ACKO AC send ACKO
rcv ACKO rev ACKO
send pkt1™ Pkt send pkt1T]
s e
ACK sen sen
(loss) X/
timeout
timeout = okt resend pkf1 =
A ka]\er ok | . rev pktl
ACK (detect duplicate) rcvACK (detect duplicate)
send ACK send pktO send ACK
revACK] ot rev pki0
send ACKO

send pkt0

(c) lost ACK

Figure 3.4-9: Operationof r dt 3. 0,

rev pkio
}@/ send ACKO

(d) premature timeout

the alternating bit protocol
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Figure 3.4-8 showsthe sender FSM for r dt 3. 0, aprotocol that reliably transfers data over a channel that can corrupt or lose
packets. Figure 3.4-9 shows how the protocol operates with no lost or delayed packets, and how it handles |ost data packets. In
Figure 3.4-9, time moves forward from the top of the diagram towards the bottom of the diagram; note that a receive time for a
packet is neccessarily later than the send time for a packet as aresult of transmisison and propagation delays. In Figures 3.4-9(b)-
(d), the send-side brackets indicate the times at which atimer is set and later times out. Several of the more subtle aspects of this
protocol are explored in the exercises at the end of this chapter. Because packet sequence numbers alternate between 0 and 1,
protocol r dt 3. O is sometimes known as the alter nating bit protocol.

We have now assembled the key elements of a data transfer protocol. Checksums, sequence numbers, timers, and positive and
negative acknowledgement packets each play a crucial and necessary role in the operation of the protocol. We now have aworking
reliable data transfer protocol!

3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt 3. 0 isafunctionally correct protocol, but it is unlikely that anyone would be happy with its performance,
particularly in today's high speed networks. At the heart of r dt 3. 0" s performance problem is the fact that it is a stop-and-wait
protocol.

To appreciate the performance impact of this stop-and-wait behavior, consider an idealized case of two end hosts, one located on
the west coast of the United States and the other located on the east cost. The speed-of-light propagation delay, Torop: between
these two end systems is approximately 15 milliseconds. Suppose that they are connected by a channel with a capacity, C, of 1
Gigabit (10**9 hits) per second. With a packet size, SP, of 1K bytes per packet including both header fields and data, the time
needed to actually transmit the packet into the 1Gbpslink is

Tirans = SP/C = (8 Kbits/packet)/ (10**9 bits/sec) = 8 microseconds

With our stop and wait protocol, if the sender begins sending the packet at t = 0, then at t = 8 microsecs the last bit enters the
channel at the sender side. The packet then makesits 15 msec cross country journey, as depicted in Figure 3.4-10a, with the last bit
of the packet emerging at the receiver at t = 15.008 msec. Assuming for smplicity that ACK packets are the same size as data
packets and that the receiver can begin sending an ACK packet as soon asthe last bit of a data packet isreceived, the last bit of the
ACK packet emerges back at the receiver at t = 30.016 msec. Thus, in 30.016 msec, the sender was only busy (sending or
receiving) for .016 msec. If we define the utilization of the sender (or the channel) as the fraction of time the sender is actually
busy sending bits into the channel, we have arather dismal sender utilization, Uggnger, Of

Ugenger = (008/ 30.016) = 0.00015

That is, the sender was busy only 1.5 hundredths of one percent of the time. Viewed another way, the sender was only able to send
1K bytesin 30.016 milliseconds, an effective throughput of only 33KB/sec - even thought a 1Gigabit per second link was
available! Imagine the unhappy network manager who just paid a fortune for a gigabit capacity link but managesto get a
throughput of only 33KB! Thisis agraphic example of how network protocols can limit the capabilities provided by the
underlying network hardware. Also, we have neglected lower layer protocol processing times at the sender and receiver, aswell as
the processing and queueing delays that would occur at any intermediate routers between the sender and receiver. Including these
effects would only serve to further increase the delay and further accentuate the poor performance.
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data packet—»

+— ACK packefts

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Figure 3.4-10: Stop-and-wait versus pipelined protocols

The solution to this particular performance problem is a simple one: rather than operate in a stop-and-wait manner, the sender is
allowed to send multiple packets without waiting for acknowledgements, as shown in Figure 3.4-10(b). Since the many in-transit
sender-to-receiver packets can be visualized asfilling a pipeline, this technique is known as pipelining. Pipelining has several
consequences for reliable data transfer protocols:

. Therange of sequence numbers must be increased, since each in-transit packet (not counting retransmissions) must have a
unique sequence number and there may be multiple, in-transit, unacknowledged packets.

. The sender and receiver-sides of the protocols may have to buffer more than one packet. Minimally, the sender will have to
buffer packets that have been transmitted, but not yet acknowledged. Buffering of correctly-received packets may also be
needed at the receiver, as discussed below.

The range of sequence numbers needed and the buffering requirements will depend on the manner in which a data transfer protocol
responds to lost, corrupted, and overly delayed packets. Two basic approaches towards pipelined error recovery can be identified:
Go-Back-N and selective repeat.

3.4.3 Go-Back-N (GBN)

send_base  nhexfsegnum dlready Usable. hot
i ¢ ack’ed yet sent
TR CEE RN OONO0O 1 seveaets ) rotesome
t _ window size—%
N

Figure 3.4-11: Sender'sview of sequence numbersin Go-Back-N

In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets (when available) without waiting for an
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acknowledgment, but is constrained to have no more than some maximum allowable number, N, of unacknowledged packetsin the
pipeline. Figure 3.4-11 shows the sender's view of the range of sequence numbersin a GBN protocol. If we define base to bethe
sequence number of the oldest unacknowledged packet and nextsegnum to be the smallest unused sequence number (i.e., the
sequence number of the next packet to be sent), then four intervals in the range of sequence numbers can be identified. Sequence
numbersin the interval [0,base-1] correspond to packets that have already been transmitted and acknowledged. Theinterval [base,
nextsegnum-1] corresponds to packets that have been sent but not yet acknowledged. Sequence numbersin the interval

[ nextsegnum,base+ N-1] can be used for packets that can be sent immediately, should data arrive from the upper layer. Finally,
sequence numbers greater than or equal to base+ N can not be used until an unacknowledged packet currently in the pipeline has
been acknowledged.

As suggested by Figure 3.4-11, the range of permissible sequence numbers for transmitted but not-yet-acknowledged packets can
be viewed as a “window" of size N over the range of sequence numbers. As the protocol operates, this window slides forward over
the sequence number space. For this reason, N is often referred to as the window size and the GBN protocol itself asadliding
window protocol. You might be wondering why even limit the number of outstandstanding, unacknowledged packet to a value
of Ninthefirst place. Why not allow an unlimited number of such packets? We will seein Section 3.5 that flow conontrol is one
reason to impose alimt on the sender. We'll examine another reason to do so in section 3.7, when we study TCP congestion
control.

In practice, a packet's sequence number is carried in afixed length field in the packet header. If k is the number of bitsin the
packet sequence number field, the range of sequence numbers is thus[0,2K-1]. With afinite range of sequence numbers, all
arithmetic involving sequence numbers must then be done using modulo 2% arithmetic. (That is, the sequence number space can be
thought of as aring of size 2k, where sequence number 2k-1 isimmediately followed by sequence number 0.) Recall that rt d3. 0
had a 1-bit sequence number and a range of sequence numbers of [0,1].Several of the problems at the end of this chapter explore
consequences of afinite range of sequence numbers. We will seein Section 3.5 that TCP has a 32-bit sequence number field,
where TCP sequence numbers count bytes in the byte stream rather than packets.

rdt_send(data)

if (nextsegnum < base+N) {
compute chksum
make_pki(sndpkt(hextsegnum)) nextsegnum. data,chksum)
udt_send(sndpkt(nextsegnum))
if (base == nextsegnum)
start_timer
nextsegnum = nextsegnum + 1
!
else
refuse_datal(data)

rdt_rcv(rcv_pkt) && notcorrupt(rcvpkt) timeout
base = getacknum({rvcpki)+1 start_timer
if (base == nextsegnum) udt_send(sndpkt(base))
slTop_Tlmer udt_send(sndpki(base+1)
eke N N % S .
start_timer udt_send(sndpkt(nextsegnum-1))

Figure 3.4-12 Extended FSM description of GBN sender.
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rdt_rcv(revpkt) &&
notcorrupt(revpkt) &&
default hassegnum(rcvpkt ,expectedsegnum)

extract(revpkt,data)
udt_send(sndpk) deliver_data(data)

make_pkt(sndpkt ACK . expectedsegnum)
udt_send(sndpkt)

Figure 3.4-13 Extended FSM description of GBN receiver.

Figures 3.4-12 and 3.4-13 give an extended-FSM description of the sender and receiver sides of an ACK-based, NAK-free, GBN
protocol. We refer to this FSM description as an extended-FSM since we have added variables (similar to programming language
variables) for base and nextsegnum, and also added operations on these variables and conditional actions involving these variables.
Note that the extended-FSM specification is now beginning to look somewhat like a programming language specification.
[Bochman 84] provides an excellent survey of additional extensionsto FSM techniques as well as other programming language-
based techniques for specifying protocols.

The GBN sender must respond to three types of events:

. Invocation from above. Whenr dt _send() iscalled from above, the sender first checks to see if the window isfull, i.e,,
whether there are N outstanding, unacknowledged packets. If the window is not full, a packet is created and sent, and
variables are appropriately updated. If the window isfull, the sender simply returns the data back to the upper layer, an
implicit indication that the window isfull. The upper layer would presumably then haveto try again later. In areal
implementation, the sender would more likely have either buffered (but not immediately sent) this data, or would have a
synchronization mechanism (e.g., a semaphore or aflag) that would allow the upper layer to call r dt _send() only when
the window is not full.

. Receipt of an ACK. In our GBN protocol, an acknowledgement for packet with sequence number n will be taken to be a
cumulative acknowledgement, indicating that all packets with a sequence number up to and including n have been
correctly received at the receiver. We'll come back to thisissue shortly when we examine the receiver side of GBN.

. A timeout event. The protocol's name, " Go-Back-N," is derived from the sender's behavior in the presence of lost or
overly delayed packets. Asin the stop-and-wait protocol, atimer will again be used to recover from lost data or
acknowledgement packets. If atimeout occurs, the sender resends all packets that have been previously sent but that have
not yet been acknowledged. Our sender in Figure 3.4-12 uses only a single timer, which can be thought of as atimer for the
oldest tranmitted-but-not-yet-acknowledged packet. 1f an ACK isreceived but there are still additional transmitted-but-yet-
to-be-acknowledged packets, the timer is restarted. If there are no outstanding unacknowledged packets, the timer is
stopped.

Thereceiver's actionsin GBN are a'so smple. If a packet with sequence number n isreceived correctly and isin-order (i.e., the
datalast delivered to the upper layer came from a packet with sequence number n-1), the receiver sends an ACK for packet n and
delivers the data portion of the packet to the upper layer. In all other cases, the receiver discards the packet and resends an ACK for
the most recently received in-order packet. Note that since packets are delivered one-at-a-time to the upper layer, if packet K has
been received and delivered, then all packets with a sequence number lower than k have aso been delivered. Thus, the use of
cumul ative acknowledgementsis a natural choice for GBN.

In our GBN protocol, the receiver discards out-of-order packets. While it may seem silly and wasteful to discard a correctly
received (but out-of-order) packet, there is some justification for doing so. Recall that the receiver must deliver data, in-order, to
the upper layer. Suppose now that packet n is expected, but packet n+ 1 arrives. Since data must be delivered in order, the receiver
could buffer (save) packet N+ 1 and then deliver this packet to the upper layer after it had later received and delivered packet N.
However, if packet Nislost, both it and packet n+1 will eventually be retransmitted as a result of the GBN retransmission rule at
the sender. Thus, the receiver can simply discard packet n+ 1. The advantage of this approach is the simplicity of receiver buffering
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- the receiver need not buffer any out-of-order packets. Thus, while the sender must maintain the upper and lower bounds of its
window and the position of nextsegnum within this window, the only piece of information the receiver need maintain isthe
sequence number of the next in-order packet. Thisvalueisheld in the variable expectedsegnum, shown in the receiver FSM in
Figure 3.4-13. Of course, the disadvantage of throwing away a correctly received packet is that the subsequent retransmission of
that packet might be lost or garbled and thus even more retransmissions would be required.

sender receiver
send pkt0 \
rcv pkto
send pkt1 sench:I)ACKO
P send pkt2 \(I)czss) rggﬁgkcm
send pkt3
(waif) rcv pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pkt4, discard
srgr\w/ cf\geré \ sond ACK]
rcv pktd, discard
—pkt?2 timeout N4 sond ACK]
send pkt2 \
send pkt3 \ rcv pki2, deliver
send pkt4 send ACKZ
send pktb \ rcv gﬂ%%ellver
sen

Figure 3.4-14. Go-Back-N in operation

Figure 3.4-14 shows the operation of the GBN protocol for the case of awindow size of four packets. Because of thiswindow size
limitation, the sender sends packets O through 3 but then must wait for one or more of these packets to be acknowledged before
proceeding. As each successive ACK (e.g., ACKO and ACK1) isreceived, the window slides forwards and the sender can transmit
one new packet (pkt4 and pkt5, respectively). On the receiver side, packet 2 islost and thus packets 3, 4, and 5 are found to be out-
of-order and are discarded.

Before closing our discussion of GBN, it isworth noting that an implementation of this protocol in a protocol stack would likely be
structured similar to that of the extended FSM in Figure 3.4-12. The implementation would also likely be in the form of various
procedures that implement the actions to be taken in response to the various events that can occur. In such event-based
programming, the various procedures are called (invoked) either by other procedures in the protocol stack, or as the result of an
interrupt. In the sender, these events would be (i) a call from the upper layer entity to invoker dt _send( ), (ii) atimer interrupt,
and (iii) acall from the lower layer toinvoker dt _rcv() when apacket arrives. The programming exercises at the end of this
chapter will give you a chance to actually implement these routines in a simulated, but realistic, network setting.

We note here that the GBN protocol incorporates amost al of the techniques that we will enounter when we study the reliable data
transfer components of TCP in Section 3.5: the use of sequence numbers, cumulative acknowledgements, checksums, and a time-
out/retransmit operation. Indeed, TCP is often referred to as a GBN style of protocol. There are, however, some differences.

file:///D|/Downloads/Livros/computacéo/Computer%20Netw... proach%20Featuring%20the%620! nternet/principles_rdt.htm (15 of 20)20/11/2004 15:52:09



Principle of Reliable Data Transfer

Many TCP implementations will buffer correctly-received but out-of-order segments [Stevens 1994]. A proposed modification to
TCP, the so-called selective acknowledgment [RFC 2018], will also allow a TCP receiver to selectively acknowledge a single out-

of-order packet rather than cumulatively acknowledge the last correctly received packet. The notion of a selective
acknowledgment is at the heart of the second broad class of pipelined protocols: the so called selective repeat protocols.

3.4.4 Selective Repeat (SR)

The GBN protocol allows the sender to potentially “fill the pipeline” in Figure 3.4-10 with packets, thus avoiding the channel
utilization problems we noted with stop-and-wait protocols. There are, however, scenarios in which GBN itself will suffer from
performance problems. In particular, when the window size and bandwidth-delay product are both large, many packets can bein
the pipeline. A single packet error can thus cause GBN to retransmit a large number of packets, many of which may be
unnecessary. As the probability of channel errors increases, the pipeline can become filled with these unnecessary retransmissions.
Imagine in our message dictation scenario, if every time aword was garbled, the surrounding 1000 words (e.g., awindow size of
1000 words) had to be repeated. The dictation would be slowed by all of the reiterated words.

As the name suggests, Selective Repeat (SR) protocols avoid unnecessary retransmissions by having the sender retransmit only
those packets that it suspects were received in error (i.e., were lost or corrupted) at the receiver. Thisindividual, as-needed,
retransmission will require that the receiver individually acknowledge correctly-received packets. A window size of N will again
be used to limit the number of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, the sender will have
aready received ACKs for some of the packetsin the window. Figure 3.4-15 shows the SR sender's view of the sequence number
space. Figure 3.4-16 details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it isin-order. Out-of-order packets are buffered until
any missing packets (i.e., packets with lower sequence numbers) are received, at which point a batch of packets can be delivered in-
order to the upper layer. Figure figsrreceiver itemizes the the various actions taken by the SR receiver. Figure 3.4-18 shows an
example of SR operation in the presence of lost packets. Note that in Figure 3.4-18, the receiver initially buffers packets 3 and 4,
and delivers them together with packet 2 to the upper layer when packet 2 isfinally received.
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(b) receiver view of sequence numbers

Figure 3.4-15: SR sender and receiver views of sequence number space

1. Datareceived from above. When datais received from above, the SR sender checks the next available sequence number
for the packet. If the sequence number is within the sender's window, the data is packetized and sent; otherwiseit is either
buffered or returned to the upper layer for later transmission, asin GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each packet must now have its own logical timer,
since only a single packet will be transmitted on timeout. A single hardware timer can be used to mimic the operation of
multiple logical timers.

3. ACK received. If an ACK isreceived, the SR sender marks that packet as having been received, provided it isin the
window. If the packet's sequence number is equal to sendbase, the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window moves and there are untransmitted packets with
sequence numbers that now fall within the window, these packets are transmitted.

Figure 3.4-16: Selective Repeat sender actions

1. Packet with sequence number in [rcvbase, rcvbaset+N-1] is correctly received. In this case, the received packet falls
within the receivers window and a selective ACK packet is returned to the sender. If the packet was not previously
received, it is buffered. If this packet has a sequence number equal to the base of the receive window (rcvbase in Figure
3.4-15), then this packet, and any previously buffered and consecutively numbered (beginning with rcvbase) packets are
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delivered to the upper layer. The receive window is then moved forward by the number of packets delivered to the upper
layer.As an example, consider Figure 3.4-18 When a packet with a sequence number of rcvbase=2 isreceived, it and
packets rcvbase+1 and rcvbaset 2 can be delivered to the upper layer.
2. Packet with sequence number in [rcvbase-N,rcvbase-1] isreceived. In this case, an ACK must be generated, even though
thisis a packet that the receiver has previously acknowledged.
3. Otherwise. Ignore the packet.
Figure 3.4-17: Selective Repeat Receiver Actions

It isimportant to note that in step 2 in Figure 3.4-17, the receiver re-acknowledges (rather than ignores) already received packets
with certain sequence numbers below the current window base. Y ou should convince yourself that this re-acknowledgement is
indeed needed. Given the sender and receiver sequence number spaces in Figure 3.4-15 for example, if thereisno ACK for packet
sendbase propagating from the receiver to the sender, the sender will eventually retransmit packet sendbase, even though it is clear
(to us, not the sender!) that the receiver has already received that packet. If the receiver were not to ACK this packet, the sender's
window would never move forward! This example illustrates an important aspect of SR protocols (and many other protocols as
well): the sender and receiver will not always have an identical view of what has been received correctly and what has not. For SR
protocols, this means that the sender and reeciver windows will not always coincide.

pki0 sent
012314567 8 9 =

pki0 revd, delivered, ACKO sent

Pkt | sent o[i234l56789
|O123456789— .

pktl revd, delivered, ACK1 sent
pki2 sent

— [0 23]456789—y 01f(2345]678F9

pkt3 sent, window full

012314567 8¢9
pkt3 revd, buffered, ACK3 sent

ACKO revd, pktd sent 0234596789
Ol 23456789

pktd revd, buffered, ACK4 sent

— k12 timeout, pki2 resent OCN23459678¢9
Ol 234156789 oki2 revd, deliver pkds 2, 3, 4
ACK2 sent
ACK] revd, pktb sent
01[2345|678¢9 01234567409

pktb rcvd, delivered, ACKS sent
012345467 8¢9

Figure 3.4-18: SR Operation
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Figure 3.4-19: SR receiver dilemma with too large windows: a new packet or aretransmission?

The lack of synchronization between sender and receiver windows has important consequences when we are faced with the reality
of afinite range of sequence numbers. Consider what could happen, for example, with afinite range of four packet sequence
numbers, 0,1,2,3 and awindow size of three. Suppose packets 0 through 2 are transmitted and correctly received and
acknowledged at the receiver. At this point, the receiver's window is over the fourth, fifth and sixth packets, which have sequence
numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first scenario, shown in Figure 3.4-19(a), the ACKsfor the

first three packets are lost and the sender retransmits these packets. The receiver thus next receives a packet with sequence number
0 - acopy of thefirst packet sent.

In the second scenario, shown in Figure 3.4-19(b), the ACK s for the first three packets are al delivered correctly. The sender thus
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moves its window forward and sends the fourth, fifth and sixth packets, with sequence numbers 3, O, 1, respectively. The packet
with sequence number 3 islost, but the packet with sequence number O arrives - a packet containing new data.

Now consider the receiver's viewpoint in Figure 3.4-19, which has a figurative curtain between the sender and the receiver, since
the receiver can not ““see" the actions taken by the sender. All the receiver observes is the sequence of messagesiit receives from
the channel and sends into the channel. Asfar asit is concerned, the two scenariosin Figure 3.4-19 are identical. There is no way
of distinguishing the retransmission of the first packet from an original transmission of the fifth packet. Clearly, awindow size that
isone smaller than the size of the sequence number space won't work. But how small must the window size be? A problem at the
end of the chapter asks you to show that the window size must be less than or equal to half the size of the sequence number space.

L et us conclude our discussion of reliable data transfer protocols by considering one remaining assumption in our underlying
channel model. Recall that we have assumed that packets can not be re-ordered within the channel between the sender and
rceiver. Thisis generally areasonable assumption when the sender and receiver are connected by a single physical wire. However,
when the “channel" connecting the two is a network, packet reordering can occur. One manifestation of packet ordering isthat old
copies of a packet with a sequence or acknowledgement number of x can appear, even though neither the sender's nor the receiver's
window contains x. With packet reordering, the channel can be thought of as essentially buffering packets and spontaneously
emitting these packets at any point in the future. Because sequence numbers may be reused, some care must be taken to guard
against such duplicate packets. The approach taken in practice isto insure that a sequence number is not reused until the sender is
relatively "~ “sure" than any previously sent packets with sequence number x are no longer in the network. Thisis done by assuming
that a packet can not “live" in the network for longer than some fixed maximum amount of time. A maximum packet lifetime of
approximately three minutes is assumed in the TCP extensions for high-speed networks [RFC 1323]. Sunshine [Sunshine 1978]

describes a method for using sequence numbers such that reordering problems can be completely avoided.
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3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer, let's turnto TCP -- the Internet's transport-layer, connection-oriented,
reliable transport protocol. In this section, we'll see that in order to provide reliable data transfer, TCP relies on many of the underlying principles
discussed in the previous section, including error detection, retransmissions, cumulative acknowledgements, timers and header fields for sequence and
acknowledgement numbers. TCP is defined in [RFC 793], [RFC 1122], [RFC 1323], [RFC 2018] and [RFC 2581].

3.5.1 The TCP Connection

TCP provides multiplexing, demultiplexing, and error detection (but not recovery) in exactly the same manner as UDP. Nevertheless, TCP and UDP
differ in many ways. The most fundamental differenceisthat UDP is connectionless, while TCP is connection-oriented. UDP is connectionless
because it sends data without ever establishing a connection. TCP is connection-oriented because before one application process can begin to send
data to another, the two processes must first "handshake" with each other -- that is, they must send some preliminary segments to each other to
establish the parameters of the ensuing datatransfer. As part of the TCP connection establishment, both sides of the connection will initialize many
TCP "state variables' (many of which will be discussed in this section and in Section 3.7) associated with the TCP connection.

The TCP "connection” is not an end-to-end TDM or FDM circuit asin acircuit-switched network. Nor isit avirtual circuit (see Chapter 1), asthe
connection state resides entirely in the two end systems. Because the TCP protocol runsonly in the end systems and not in the intermediate network
elements (routers and bridges), the intermediate network elements do not maintain TCP connection state. In fact, the intermediate routers are
completely obliviousto TCP connections; they see datagrams, not connections.

A TCP connection provides for full duplex datatransfer. That is, application-level data can be transferred in both directions between two hosts - if
thereis a TCP connection between process A on one host and process B on another host, then application-level data can flow from A to B at the same
time as application-level dataflowsfrom B to A. TCP connection is also aways point-to-point, i.e., between a single sender and a single receiver. So
called "multicasting” (see Section 4.8) -- the transfer of data from one sender to many receiversin a single send operation -- is not possible with TCP.
With TCP, two hosts are company and three are a crowd!

Let us now take alook at how a TCP connection is established. Suppose a process running in one host wants to initiate a connection with another
processin another host. Recall that the host that isinitiating the connection is called the client host, while the other host is called the server host. The
client application process first informs the client TCP that it wants to establish a connection to a process in the server. Recall from Section 2.6, a Java
client program does this by issuing the command:

Socket client Socket = new Socket ("hostnane", "port nunber");
The TCP in the client then proceeds to establish a TCP connection with the TCP in the server. We will discuss in some detail the connection
establishment procedure at the end of this section. For now it suffices to know that the client first sends a special TCP segment; the server responds
with a second special TCP segment; and finally the client responds again with a third special segment. The first two segments contain no "payload,” i.
e., no application-layer data; the third of these segments may carry a payload. Because three segments are sent between the two hosts, this connection
establishment procedure is often referred to as athree-way handshake.

Once a TCP connection is established, the two application processes can send data to each other; because TCP is full-duplex they can send data at the
sametime. Let us consider the sending of data from the client process to the server process. The client process passes a stream of data through the
socket (the door of the process), as described in Section 2.6. Once the data passes through the door, the data is now in the hands of TCP running in the
client. As shown in the Figure 3.5-1, TCP directs this data to the connection's send buffer, which is one of the buffersthat is set aside during the initial
three-way handshake. From timeto time, TCP will "grab" chunks of data from the send buffer. The maximum amount of data that can be grabbed and
placed in asegment is limited by the Maximum Segment Size (M SS). The M SS depends on the TCP implementation (determined by the operating
system) and can often be configured; common values are 1,500 bytes, 536 bytes and 512 bytes. (These segment sizes are often chosen in order to avoid
I P fragmentation, which will be discussed in the next chapter.) Note that the M SS is the maximum amount of application-level datain the segment, not
the maximum size of the TCP segment including headers. (This terminology is confusing, but we haveto live with it, asit iswell entrenched.)
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Figure 3.5-1: TCP send and receive buffers

TCP encapsulates each chunk of client data with TCP header, thereby forming TCP segments. The segments are passed down to the network layer,
where they are separately encapsulated within network-layer 1P datagrams. The |P datagrams are then sent into the network. When TCP receives a
segment at the other end, the segment's datais placed in the TCP connection's r eceive buffer. The application reads the stream of data from this
buffer. Each side of the connection has its own send buffer and its own receive buffer. The send and receive buffers for data flowing in one direction
are shown in Figure 3.5-1.

We see from this discussion that a TCP connection consists of buffers, variables and a socket connection to a process in one host, and another set of
buffers, variables and a socket connection to a processin another host. As mentioned earlier, no buffers or variables are allocated to the connection in
the network elements (routers, bridges and repeaters) between the hosts.

3.5.2 TCP Segment Structure

Having taken a brief look at the TCP connection, let's examine the TCP segment structure. The TCP segment consists of header fields and adata field.
The datafield contains a chunk of application data. As mentioned above, the MSS limits the maximum size of a segment's datafield. When TCP
sends alarge file, such as an encoded image as part of a Web page, it typically breaks the file into chunks of size MSS (except for the last chunk,
which will often be less than the MSS). Interactive applications, however, often transmit data chunks that are smaller than the MSS; for example, with
remote login applications like Telnet, the data field in the TCP segment is often only one byte. Because the TCP header is typically 20 bytes (12 bytes
more than the UDP header), segments sent by Telnet may only be 21 bytesin length.

Figure 3.3-2 shows the structure of the TCP segment. Aswith UDP, the header includes sour ce and destination port numbers, that are used for
multiplexing/demultiplexing data from/to upper layer applications. Also as with UDP, the header includes achecksum field. A TCP segment header
also contains the following fields:

. The32-bit sequence number field, and the 32-bit acknowledgment number field are used by the TCP sender and receiver in implementing a
reliable data transfer service, as discussed below.

. The 16-bit window sizefield is used for the purposes of flow control. We will see shortly that it is used to indicate the number of bytesthat a
receiver iswilling to accept.

. The4-bit length field specifies the length of the TCP header in 32-bit words. The TCP header can be of variable length due to the TCP
optionsfield, discussed below. (Typically, the options field is empty, so that the length of the typical TCP header is 20 bytes.)

. Theoptiona and variable length optionsfield is used when a sender and receiver negotiate the maximum segment size (MSS) or as a window
scaling factor for use in high-speed networks. A timestamping option is also defined. See [RFC 854], [RFC1323] for additional details.

. Theflagfield contains 6 bits. The ACK bit is used to indicate that the value carried in the acknowledgment field isvalid. The RST, SYN
and FIN bits are used for connection setup and teardown, as we will discuss at the end of this section. When the PSH bit is set, thisisan
indication that the receiver should pass the data to the upper layer immediately. Finally, the URG bit isused to indicate there is datain this
segment that the sending-side upper layer entity has marked as ““urgent." The location of the last byte of this urgent dataisindicated by the 16-
bit urgent data pointer. TCP must inform the receiving-side upper layer entity when urgent data exists and pass it a pointer to the end of the
urgent data. (In practice, the PSH, URG and pointer to urgent data are not used. However, we mention these fields for completeness.)
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Figure 3.5-2: TCP segment structure

3.5.3 Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number field and the acknowledgment number field. These fieldsare a
critical part of TCP'sreliable datatransfer service. But before discussing how these fields are used to provide reliable data transfer, let us first explain
what exactly TCP putsin these fields.

TCP views data as an unstructured, but ordered, stream of bytes. TCP's use of sequence numbers reflects this view in that sequence numbers are over
the stream of transmitted bytes and not over the series of transmitted segments. The sequence number for a segment is the byte-stream number of the
first bytein the segment. Let'slook at an example. Suppose that a processin host A wants to send a stream of datato a processin host B over a TCP
connection. The TCPin host A will implicitly number each byte in the data stream. Suppose that the data stream consists of a file consisting of
500,000 bytes, that the MSSis 1,000 bytes, and that the first byte of the data stream is numbered zero. As shown in Figure 3.5-3, TCP constructs 500
segments out of the data stream. The first segment gets assigned sequence number 0, the second segment gets assigned sequence number 1000, the
third segment gets assigned sequence number 2000, and so on.. Each sequence number isinserted in the sequence number field in the header of the
appropriate TCP segment.

R file >
0 1 - 1000 e 2000 e 499,999
data for s data for
1st segment 2nd segment

Figure 3.5-3: Dividing file datainto TCP segments.

Now let us consider acknowledgment numbers. These are alittle trickier than sequence numbers. Recall that TCP isfull duplex, so that host A may be
receiving data from host B while it sends datato host B (as part of the same TCP connection). Each of the segments that arrive from host B have a
sequence number for the data flowing from B to A. The acknowledgment number that host A putsin its segment is sequence number of the next byte
host A is expecting from host B. It isgood to look at afew examples to understand what is going on here. Suppose that host A has received all bytes
numbered 0 through 535 from B and suppose that it is about to send a segment to host B. In other words, host A iswaiting for byte 536 and al the
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subsequent bytesin host B's data stream. So host A puts 536 in the acknowledgment number field of the segment it sendsto B.

As another example, suppose that host A has received one segment from host B containing bytes O through 535 and another segment containing bytes
900 through 1,000. For some reason host A has not yet received bytes 536 through 899. In this example, host A is still waiting for byte 536 (and
beyond) in order to recreate B's data stream. Thus, A's next segment to B will contain 536 in the acknowledgment number field. Because TCP only
acknowledges bytes up to the first missing byte in the stream, TCP is said to provide cumulative acknowledgements.

Thislast example aso brings up an important but subtle issue. Host A received the third segment (bytes 900 through 1,000) before receiving the
second segment (bytes 536 through 899). Thus, the third segment arrived out of order. The subtle issueis: What does a host do when it receives out of
order segments in a TCP connection? I nterestingly, the TCP RFCs do not impose any rules here, and leave the decision up to the people programming
a TCP implementation. There are basically two choices: either (i) the receiver immediately discards out-of-order bytes; or (ii) the receiver keeps the
out-of-order bytes and waits for the missing bytes to fill in the gaps. Clearly, the latter choice is more efficient in terms of network bandwidth, whereas
the former choice significantly simplifies the TCP code. Throughout the remainder of this introductory discussion of TCP, we focus on the former
implementation, that is, we assume that the TCP receiver discards out-of-order segments.

In Figure 3.5.3 we assumed that the initial sequence number was zero. In truth, both sides of a TCP connection randomly choose an initial sequence
number. Thisis done to minimize the possibility a segment that is still present in the network from an earlier, already-terminated connection between
two hosts is mistaken for avalid segment in alater connection between these same two hosts (who a so happen to be using the same port numbers as
the old connection) [Sunshine 78].

3.5.4 Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in [REC 854], isapopular application-layer protocol used for remote login. It runs over TCP and is designed to work between any pair
of hosts. Unlike the bulk-data transfer applications discussed in Chapter 2, Telnet is an interactive application. We discuss a Telnet example here, as it
nicely illustrates TCP sequence and acknowledgment numbers.

Suppose one host, 88.88.88.88, initiates a Telnet session with host 99.99.99.99. (Anticipating our discussion on IP addressing in the next chapter, we
take the liberty to use IP addresses to identify the hosts.) Because host 88.88.88.88 initiates the session, it is labeled the client and host 99.99.99.99 is
labeled the server. Each character typed by the user (at the client) will be sent to the remote host; the remote host will send back a copy of each
character, which will be displayed on the Telnet user's screen. This "echo back" is used to ensure that characters seen by the Telnet user have already
been received and processed at the remote site. Each character thus traverses the network twice between when the user hits the key and when the
character is displayed on the user's monitor.

Now suppose the user types asingle letter, 'C', and then grabs a coffee. Let's examine the TCP segments that are sent between the client and server. As
shown in Figure 3.5-4, we suppose the starting sequence numbers are 42 and 79 for the client and server, respectively. Recall that the sequence number
of asegment is the sequence number of first bytein the datafield. Thusthe first segment sent from the client will have sequence number 42; the first
segment sent from the server will have sequence number 79. Recall that the acknowledgment number is the sequence number of the next byte of data
that the host is waiting for. After the TCP connection is established but before any datais sent, the client is waiting for byte 79 and the server is
waiting for byte 42.
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Figure 3.5-4: Sequence and acknowledgment numbers for asimple Telnet application over TCP

Asshownin Figure 3.5-4, three segments are sent. The first segment is sent from the client to the server, containing the one-byte ASCII representation
of theletter 'C' inits datafield. Thisfirst segment also has 42 in its sequence number field, aswe just described. Also, because the client has not yet
received any data from the server, this first segment will have 79 in its acknowledgment number field.

The second segment is sent from the server to the client. It serves adual purpose. First it provides an acknowledgment for the data the client has
received. By putting 43 in the acknowledgment field, the server istelling the client that it has successfully received everything up through byte 42 and
is now waiting for bytes 43 onward. The second purpose of this segment isto echo back the letter 'C'. Thus, the second segment has the ASCI|
representation of 'C' in its data field. This second segment has the sequence number 79, the initial sequence number of the server-to-client data flow of
this TCP connection, as thisisthe very first byte of data that the server is sending. Note that the acknowledgement for client-to-server datais carried
in a segment carrying server-to-client data; this acknowledgement is said to be piggybacked on the server-to-client data segment.

The third segment is sent from the client to the server. Its sole purpose is to acknowledge the data it has received from the server. (Recall that the
second segment contained data -- the letter 'C' -- from the server to the client.) This segment has an empty datafield (i.e., the acknowledgment is not
being piggybacked with any cient-to-server data). The segment has 80 in the acknowledgment number field because the client has received the stream
of bytes up through byte sequence number 79 and it is now waiting for bytes 80 onward. Y ou might think it odd that this segment also has a sequence
number since the segment contains no data. But because TCP has a sequence number field, the segment needs to have some sequence number.

3.5.5 Reliable Data Transfer

Recall that the Internet's network layer service (1P service) is unreliable. IP does not guarantee datagram delivery, does not guarantee in-order delivery
of datagrams, and does not guarantee the integrity of the datain the datagrams. With IP service, datagrams can overflow router buffers and never
reach their destination, datagrams can arrive out of order, and bits in the datagram can get corrupted (flipped from 0 to 1 and vice versa). Because
transport-layer segments are carried across the network by | P datagrams, transport-layer segments can also suffer from these problems as well.

TCP creates areliable data transfer service on top of IP's unreliable best-effort service. Many popular application protocols -- including FTP, SMTP,
NNTP, HTTP and Telnet -- use TCP rather than UDP primarily because TCP provides reliable data transfer service. TCP's reliable data transfer
service ensures that the data stream that a process reads out of its TCP receive buffer is uncorrupted, without gaps, without duplication, and in
sequence, i.e., the byte stream is exactly the same byte stream that was sent by the end system on the other side of the connection. In this subsection
we provide an informal overview of how TCP provides reliable data transfer. We shall see that the reliable data transfer service of TCP uses many of
the principles that we studied in Section 3.4.

Retransmissions
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Retransmission of lost and corrupted data is crucial for providing reliable datatransfer. TCP provides reliable data transfer by using positive
acknowledgments and timers in much the same way as we studied in section 3.4. TCP acknowledges data that has been received correctly, and
retransmits segments when segments or their corresponding acknowledgements are thought to be lost or corrupted. Just as in the case of our reliable
data transfer protocol, r dt 3. 0, TCP can not itself tell for certain if a segment, or its ACK, islost, corrupted, or overly delayed. In all cases, TCP's
response will be the same: retransmit the segment in question.

TCP also uses pipelining, alowing the sender to have multiple transmitted but yet-to-be-acknowledged segments outstanding at any given time. We
saw in the previous section that pipelining can greatly improve the throughput of a TCP connection when the ratio of the segment size to round trip
delay issmall. The specific number of outstanding unacknowledged segments that a sender can have is determined by TCP's flow control and
congestion control mechanisms. TCP flow control is discussed at the end of this section; TCP congestion control is discussed in Section 3.7. For the
time being, we must simply be aware that the sender can have multiple transmitted, but unacknowledged, segments at any given time.

/* assune sender is not constrained by TCP flow or congestion control,
that data fromabove is less than MSS in size, and that data transfer is
in one direction only */

sendbase = initial _sequence nunber /* see Figure 3.4-11 */
next seqnum = initial _sequence nunber

| oop (forever) {
sw tch(event)

event:data received fromapplication above
create TCP segnent with sequence nunber nextsegnum
start tiner for segnment nextseqnum
pass segnent to IP
next seqnum = next seqnum + | engt h( dat a)

event: tinmer tinmeout for segnent with sequence number y
retransmt segnent with sequence nunber y
conmpue new tinmeout interval for segnent y
restart tinmer for sequence nunber y

event: ACK received, with ACK field value of y
if (y > sendbase) { /* cunulative ACK of all data up toy */
cancel all tinmers for segnments with sequence nunbers <y
sendbase = y

else { /* a duplicate ACK for al ready ACKed segnent */
i ncrement nunber of duplicate ACKs received for y
i f (nunmber of duplicate ACKS received for y == 3) {
[* TCP fast retransmt */
resend segnent with sequence nunber y
restart timer for segnent y

}

} /* end of |oop forever */

Figure 3.5-5: simplified TCP sender

Figure 3.5-5 shows the three major events related to data transmission/retransmission at a simplified TCP sender. Let us consider a TCP connection
between host A and B and focus on the data stream being sent from host A to host B. At the sending host (A), TCP is passed application-layer data,
which it frames into segments and then passes on to |P. The passing of data from the application to TCP and the subsequent framing and transmission
of asegment is the first important event that the TCP sender must handle. Each time TCP releases a segment to IP, it starts atimer for that segment. If

file:///D)/Downl oads/Livros/computacéio/ Computer%20Net...%20A pproach%20Featuring%20the%20I nternet/segment.html (6 of 15)20/11/2004 15:52:11



Transmission Control Protocol

thistimer expires, an interrupt event is generated at host A. TCP responds to the timeout event, the second major type of event that the TCP sender
must handle, by retransmitting the segment that caused the timeout.

The third major event that must be handled by the TCP sender is the arrival of an acknowledgement segment (ACK) from the receiver (more
specifically, asegment containing avalid ACK field value). Here, the sender's TCP must determine whether the ACK is afirst-time ACK for a
segment that the sender has yet to receive an acknowledgement for, or aso-called duplicate ACK that re-acknowledges a segment for which the
sender has already received an earlier acknowledgement. In the case of the arrival of afirst-time ACK, the sender now knows that all data up to the
byte being acknowledged has been received correctly at the receiver. The sender can thus update its TCP state variable that tracks the sequence number
of the last byte that is known to have been received correctly and in-order at the receiver.

To understand the sender's response to a duplicate ACK, we must ook at why the receiver sends a duplicate ACK in thefirst place. Table 3.5-1
summarizes the TCP receiver's ACK generation policy. When a TCP receiver receives a ssgment with a sequence number that is larger than the next,
expected, in-order sequence number, it detects a gap in the data stream - i.e., amissing segment. Since TCP does not use negative acknowledgements,
the receiver can not send an explicit negative acknowledgement back to the sender. Instead, it simply re-acknowledges (i.e., generates a duplicate
ACK for) thelast in-order byte of datait has received. If the TCP sender receives three duplicate ACKs for the same data, it takes this as an indication
that the segment following the segment that has been ACKed three times has been lost. In this case, TCP performs afast retransmit [RFC 2581],

retransmitting the missing segment before that segment's timer expires.

Event TCP receiver action

Arrival of in-order segment with expected
sequence number. All data up to up to expected
sequence number already acknowledged.

No gapsin the received data.

Delayed ACK. Wait up to 500 msfor arrival
of another in-order segment. If next in-order segment
does not arrivesin thisinterval, send an ACK

Arrival of in-order segment with expected

sequence number. One other in-order Immediately send single cumulative ACK,
segment waiting for ACK transmission. ACKing both in-order segments

No gapsin the received data.

Arrival of out-of-order segment with higher- Immediately send duplicate ACK, indicating
than seguence

expected sequence number. Gap detected. number of next expected byte

Arrival of segment that partially or completely  |Immediately send ACK, provided that segment starts
fillsingapin received data at thelower end of gap.

Table 3.5-1: TCP ACK generation recommendations [RFC 1122, RFC 2581]

A Few Interesting Scenarios

We end this discussion by looking at afew simple scenarios. Figure 3.5-6 depicts the scenario where host A sends one segment to host B. Suppose that
this segment has sequence number 92 and contains 8 bytes of data. After sending this segment, host A waits for a segment from B with
acknowledgment number 100. Although the segment from A is received at B, the acknowledgment from B to A getslost. In this case, the timer
expires, and host A retransmits the same segment. Of course, when host B receives the retransmission, it will observe that the bytes in the segment
duplicate bytes it has already deposited in its receive buffer. Thus TCP in host B will discard the bytes in the retransmitted segment.
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Figure 3.5-6: Retransmission due to alost acknowledgment

In asecond scenario, host A sends two segments back to back. The first segment has sequence number 92 and 8 bytes of data, and the second segment
has sequence number 100 and 20 bytes of data. Suppose that both segments arrive intact at B, and B sends two separate acknowledgements for each of
these segments. The first of these acknowledgements has acknowledgment number 100; the second has acknowledgment number 120. Suppose how
that neither of the acknowledgements arrive at host A before the timeout of the first segment. When the timer expires, host A resends the first segment
with sequence number 92. Now, you may ask, does A also resend second segment? According to the rules described above, host A resends the
segment only if the timer expires before the arrival of an acknowledgment with an acknowledgment number of 120 or greater. Thus, as shown in
Figure 3.5-7, if the second acknowledgment does not get lost and arrives before the timeout of the second segment, A does not resend the second
segment.

HOst
A

Host

92 Timeou’r—»l

|<—seq

|<-seq: 100 timeout —>|

v ‘/VV
fime ( fime

Figure 3.5-7: Segment is not retransmitted because its acknowledgment arrives before the timeout.

In athird and final scenario, suppose host A sends the two segments, exactly asin the second example. The acknowledgment of the first segment is
lost in the network, but just before the timeout of the first segment, host A receives an acknowledgment with acknowledgment number 120. Host A
therefore knows that host B has received everything up through byte 119; so host A does not resend either of the two segments. This scenariois
illustrated in the Figure 3.5-8.
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Figure 3.5-8: A cumulative acknowledgment avoids retransmission of first sesgment
Recdll that in the previous section we said that TCP is a Go-Back-N style protocol. Thisis because acknowledgements are cumulative and correctly-
received but out-of-order segments are not individually ACKed by the receiver. Consequently, as shown in Figure 3.5-5 (see also Figure 3.4-11), the
TCP sender need only maintain the smallest sequence number of atransmitted but unacknowledged byte (sendbase) and the sequence number of
the next byte to be sent ( next segnum) . But the reader should keep in mind that although the reliable-data-transfer component of TCP resembles
Go-Back-N, it is by no means a pure implementation of Go-Back-N. To see that there are some striking differences between TCP and Go-Back-N,
consider what happens when the sender sends a sequence of segments 1, 2,..., N, and all of the segments arrive in order without error at the receiver.
Further suppose that the acknowledgment for packet n < N getslost, but the remaining N-1 acknowledgments arrive at the sender before their
respective timeouts. In this example, Go-Back-N would retransmit not only packet n, but also all the subsequent packets n+1, n+2,...,N. TCP, on the
other hand, would retransmit at most one segment, namely, segment n. Moreover, TCP would not even retransmit segment n if the acknowledgement
for segment n+ 1 arrives before the timeout for segment n.

There have recently been severa proposals [RFC 2018, Fall 1996, Mathis 1996] to extend the TCP ACKing scheme to be more similar to a selective
repeat protocol. The key ideain these proposalsisto provide the sender with explicit information about which segments have been received correctly,
and which are still missing at the receiver.

3.5.6 Flow Control

Recall that the hosts on each side of a TCP connection each set aside a receive buffer for the connection. When the TCP connection receives bytes that
are correct and in sequence, it places the data in the receive buffer. The associated application process will read data from this buffer, but not
necessarily at the instant the data arrives. Indeed, the receiving application may be busy with some other task and may not even attempt to read the data
until long after it has arrived. If the application isrelatively slow at reading the data, the sender can very easily overflow the connection's receive
buffer by sending too much datatoo quickly. TCP thus provides aflow control serviceto its applications by eliminating the possibility of the sender
overflowing the receiver's buffer. Flow control isthus a speed matching service - matching the rate at which the sender is seding to the rate at which
the receiving application isreading. As noted earlier, a TCP sender can also be throttled due to congestion within the | P network; this form of sender
control isreferred to as congestion control, atopic we will explorein detail in Sections 3.6 and 3.7. While the actions taken by flow and congestion
control are similar (the throttling of the sender), they are obviously taken for very different reasons. Unfortunately, many authors use the term
interchangeably, and the savvy reader would be careful to distinguish between the two cases. Let's now discuss how TCP providesits flow control
service.

TCP provides flow control by having the sender maintain a variable called the receive window. Informally, the receive window is used to give the
sender an idea about how much free buffer space is available at the receiver. In a full-duplex connection, the sender at each side of the connection
maintains a distinct receive window. The receive window is dynamic, i.e., it changes throughout a connection's lifetime. Let's investigate the receive
window in the context of afile transfer. Suppose that host A is sending alarge fileto host B over a TCP connection. Host B alocates a receive buffer
to this connection; denote its size by RcvBuf f er . From time to time, the application process in host B reads from the buffer. Define the following

variables:
Last Byt eRead = the number of the last byte in the data stream read from the buffer by the application processin B.

Last Byt eRcvd = the number of the last byte in the data stream that has arrived from the network and has been placed in the receive buffer at
B.

file:///D)/Downl oads/Livros/computacéio/ Computer%20Net...%20A pproach%20Featuring%20the%20I nternet/segment.html (9 of 15)20/11/2004 15:52:11



Transmission Control Protocol

Because TCP is not permitted to overflow the allocated buffer, we must have:
Last Byt eRcvd - LastByteRead <= RcvBuffer

The receive window, denoted RcvW ndow, is set to the amount of spare room in the buffer:
RcvW ndow = RcvBuffer - [ LastByteRcvd - Last Byt eRead]

Because the spare room changes with time, RevW ndow s dynamic. The variable RevW ndowisillustrated in Figure 3.5-9.

k— RevWindow —f

////

data from
IP

application
process

7
7 / 7%
{.7 RevBufler 4*

Figure 3.5-9: The receive window (RcvW ndow) and the receive buffer (RcvBuf f er)

How does the connection use the variable RcvW ndowto provide the flow control service? Host B informs host A of how much spare room it hasin
the connection buffer by placing its current value of RevW ndow in the window field of every segment it sendsto A. Initially host B sets
RcvW ndow = RcvBuf f er . Note that to pull this off, host B must keep track of several connection-specific variables.

Host A inturn keeps track of two variables, Last Byt eSent and Last Byt eAcked, which have obvious meanings. Note that the difference
between these two variables, Last Byt eSent - Last Byt eAcked, isthe amount of unacknowledged datathat A has sent into the connection. By
keeping the amount of unacknowledged data less than the value of RevW ndow, host A is assured that it is not overflowing the receive buffer at host
B. Thus host A makes sure throughout the connection's life that

Last Byt eSent - LastByteAcked <= RcvW ndow.

There is one minor technical problem with this scheme. To see this, suppose host B's receive buffer becomes full so that RevW ndow = 0. After
advertising RcvW ndow = 0 to host A, also suppose that B has nothing to send to A. Asthe application process at B empties the buffer, TCP does
not send new segments with new RcvW ndowsto host A -- TCP will only send a segment to host A if it has datato send or if it hasan
acknowledgment to send. Therefore host A is never informed that some space has opened up in host B's receive buffer: host A is blocked and can
transmit no more datal To solve this problem, the TCP specification requires host A to continue to send segments with one data byte when B's receive
window is zero. These segments will be acknowledged by the receiver. Eventually the buffer will begin to empty and the acknowledgements will
contain non-zero RevW ndow.

Having described TCP's flow control service, we briefly mention here that UDP does not provide flow control. To understand the issue here, consider
sending a series of UDP segments from a process on host A to a process on host B. For atypical UDP implementation, UDP will append the segments
(more precisely, the data in the segments) in afinite-size queue that "precedes’ the corresponding socket (i.e., the door to the process). The process
reads one entire segment at atime from the queue. If the process does not read the segments fast enough from the queue, the queue will overflow and
segments will get lost.

Following this section we provide an interactive Java applet which should provide significant insight into the TCP receive window.

3.5.7 Round Trip Time and Timeout

Recall that when a host sends a segment into a TCP connection, it starts atimer. If the timer expires before the host receives an acknowledgment for
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the data in the segment, the host retransmits the segment. The time from when the timer is started until when it expiresis called the timeout of the
timer. A natura question is, how large should timeout be? Clearly, the timeout should be larger than the connection's round-trip time, i.e., the time
from when a segment is sent until it is acknowledged. Otherwise, unnecessary retransmissions would be sent. But the timeout should not be much
larger than the round-trip time; otherwise, when a segment is lost, TCP would not quickly retransmit the segment, thereby introducing significant data
transfer delays into the application. Before discussing the timeout interval in more detail, let us take a closer ook at the round-trip time (RTT). The
discussion below is based on the TCP work in [Jacobson 1988].

Estimating the Average Round-Trip Time

The sample RTT, denoted Sanpl eRTT, for a segment is the time from when the segment is sent (i.e., passed to |P) until an acknowledgment for the
segment is received. Each segment sent will have its own associated Sanpl eRTT. Obviously, the Sanpl eRTT values will fluctuate from segment to
segment due to congestion in the routers and to the varying load on the end systems. Because of this fluctuation, any given Sanpl eRTT value may be
atypical. In order to estimate atypical RTT, it istherefore natural to take some sort of average of the Sanpl eRTT values. TCP maintains an average,
caled Est i mat edRTT, of the Sanpl eRTT values. Upon receiving an acknowledgment and obtaining anew Sanpl eRTT, TCP updates

Esti mat edRTT according to the following formula:

Estimat edRTT = (1-x) EstimatedRTT + x Sanpl eRTT.

The above formulais written in the form of a programming language statement - the new value of Est i mat edRTT isaweighted combination of the
previousvalue of Est i mat ed RTT and the new value for Sanpl eRTT. A typical value of x isx = .1, in which case the above formula becomes:

Estimat edRTT = .9 EstinmatedRTT + .1 Sanpl eRTT.
Note that Est i mat edRTT isaweighted average of the Sanpl eRTT values. Aswe will seein the homework, this weighted average puts more
weight on recent samples than on old samples, Thisis natural, as the more recent samples better reflect the current congestion in the network. In
statistics, such an averageis called an exponential weighted moving average (EWMA). The word "exponential" appearsin EWMA because the

weight of agiven SampleRTT decays exponentially fast as the updates proceed. In the homework problems you will be asked to derive the exponential
termin Esti mat edRTT.

Setting the Timeout

The timeout should be set so that atimer expires early (i.e., before the delayed arrival of a segment's ACK) only on rare occasions. It istherefore
natural to set the timeout equal to the Est i mat edRTT plus some margin. The margin should be large when there is alot of fluctuation in the
Sanpl eRTT values; it should be small when thereislittle fluctuation. TCP uses the following formula:

Ti meout = Estimat edRTT + 4*Devi ati on,
where Devi at i on isan estimate of how much Sanpl eRTT typically deviatesfrom Est i nat edRTT:

Deviation = (1-x) Deviation + x | Sanpl eRTT - EstinmatedRTT |
Notethat Devi at i on isan EWMA of how much Sanpl eRTT deviatesfrom Est i mat edRTT. If the Sanpl eRTT values have little fluctuation,

then Devi at i on issmall and Ti meout ishardly morethan Est i mat edRTT; on the other hand, if thereisalot of fluctuation, Devi at i on will
belargeand Ti meout will be much larger than Est i mat edRTT.

3.5.8 TCP Connection Management

In this subsection we take a closer look at how a TCP connection is established and torn down. Although this particular topic may not seem
particularly exciting, it isimportant because TCP connection establishment can significantly add to perceived delays (for example, when surfing the
Web). Let's now take alook at how a TCP connection is established. Suppose a process running in one host wants to initiate a connection with another
process in another host. The host that is initiating the connection is called the client host whereas the other host is called the server host. The client
application process first informs the client TCP that it wants to establish a connection to a process in the server. Recall from Section 2.6, that a Java
client program does this by issuing the command:

Socket client Socket = new Socket ("hostnanme", "port nunber");

The TCP in the client then proceeds to establish a TCP connection with the TCP in the server in the following manner:
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. Step 1. Theclient-side TCP first sends a special TCP segment to the server-side TCP. This special segment contains no application-layer data.
It does, however, have one of the flag bitsin the segment's header (see Figure 3.3-2), the so-called SYN bit, setto 1. For thisreason, this
special segment isreferred to as a SYN segment. In addition, the client chooses an initial sequence number (client_isn) and puts this number in
the sequence number field of theinitial TCP SY N segment.This segment is encapsulated within an | P datagram and sent into the Internet.

. Step 2. Once the IP datagram containing the TCP SYN segment arrives at the server host (assuming it does arrive!), the server extracts the TCP
SYN segment from the datagram, allocates the TCP buffers and variables to the connection, and sends a connection-granted segment to client
TCP. This connection-granted segment also contains no application-layer data. However, it does contain three important pieces of information
in the segment header. First, the SYN bit isset to 1. Second, the acknowledgment field of the TCP segment header is set toisn+1. Finadly, the
server chooses its own initial sequence number (server_isn) and puts this value in the sequence number field of the TCP segment header. This
connection granted segment is saying, in effect, "I received your SY N packet to start a connection with your initial sequence number,
client_isn. | agree to establish this connection. My own initial sequence number isserver_isn." The conenction-granted segment is sometimes
referred to asa SYNACK segment.

. Step 3. Upon receiving the connection-granted segment, the client also all ocates buffers and variables to the connection. The client host then
sends the server yet another segment; this last segment acknowledges the server's connection-granted segment (the client does so by putting the
value server_isn+ 1 in the acknowledgment field of the TCP segment header). The SYN bit is set to O, since the connection is established.

Once the following three steps have been completed, the client and server hosts can send segments containing data to each other. In each of these
future segments, the SYN bit will be set to zero. Note that in order to establish the connection, three packets are sent between the two hosts, as
illustrated in Figure 3.5-10. For this reason, this connection establishment procedure is often referred to as athree-way handshake. Several aspects of
the TCP three-way handshake (Why are initial sequence numbers needed? Why is athree-way handshake, as opposed to a two-way handshake,
needed?) are explored in the homework problems.

client] . Connection 'equest (SYN=1, seq=c . server
host lent_isn) host

—>»
)

_1, seq=Servel \sr\,
connection granted (SN ok = client s

Figure 3.5-10: TCP three-way handshake: segment exchange

All good things must come to an end, and the same is true with a TCP connection. Either of the two processes participating in a TCP connection can
end the connection. When a connection ends, the "resources’ (i.e., the buffers and variables) in the hosts are de-allocated. As an example, suppose the
client decides to close the connection. The client application process issues a close command. This causes the client TCP to send a special TCP
segment to the server process. This special segment has aflag bit in the segment's header, the so-called FIN bit (see Figure 3.3-2), set to 1. When the
server receives this segment, it sends the client an acknowledgment segment in return. The server then sends its own shut-down segment, which has
the FIN hit set to 1. Finally, the client acknowledges the server's shut-down segment. At this point, all the resources in the two hosts are now de-
allocated.

During the life of a TCP connection, the TCP protocol running in each host makes transitions through various TCP states. Figure 3.5-11 illustrates a
typical sequence of TCP states that are visited by the client TCP. The client TCP beginsin the closed state. The application on the client side initiates a
new TCP connection (by creating a Socket object in our Java examples). This causes TCP in the client to send a SYN segment to TCP in the server.
After having sent the SYN segment, the client TCP entersthe SYN_SENT sent. Whilein the SYN_STATE the client TCP waits for a segment from
the server TCP that includes an acknowledgment for the client's previous segment as well asthe SYN bit set to 1. Once having received such a
segment, the client TCP entersthe ESTABLISHED state. Whilein the ESTABLISHED state, the TCP client can send and receive TCP segments
containing payload (i.e., application-generated) data.

Suppose that the client application decides it wants to close the connection. This causes the client TCP to send a TCP segment with the FIN bit set to 1
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and to enter the FIN_WAIT _1 state. Whilein the FIN_WAIT state, the client TCP waits for a TCP segment from the server with an acknowledgment.
When it receives this segment, the client TCP entersthe FIN_WAIT_2 state. While in the FIN_WAIT_2 state, the client waits for another segment
from the server with the FIN bit set to 1; after receiving this segment, the client TCP acknowledges the server's segment and entersthe TIME_WAIT
state. The TIME_WAIT state lets the TCP client resend the final acknowledgment in the case the ACK islost. The time spent in the TIME-WAIT state
isimplementation dependent, but typical values are 30 seconds, 1 minute and 2 minutes. After the wait, the connection formally closes and all
resources on the client side (including port numbers) are released.

CLOSED client application
initiates a TCP connection

wiait 30 seconds

send SYM
TIME_WAIT SYN_SENT
receive FIN receive SN & ACK,
send ACK send ACK
FIN_WAIT_2 ESTABLISHED

client application
initiates close connection

receive ACK
send nothing FIN_WAIT_1 send FIM

Figure 3.5-11: A typica sequence of TCP states visited by aclient TCP

Figure 3.5-12 illustrates the series of statestypically visited by the server-side TCP; the transitions are self-explanatory. In these two state transition
diagrams, we have only shown how a TCP connection is normally established and shut down. We are not going to describe what happensin certain
pathological scenarios, for example, when both sides of a connection want to shut down at the same time. If you are interested in learning about this
and other advanced issues concerning TCP, you are encouraged to see Steven's comprehensive book [Stevens 1994].
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CLOSED server application
creates a listen socket

receive ACK
send nothing

LAST_ACK LISTEN
raceive SYMN
send FIR send SYM & ACk
CLOSE_WAIT SYN_RCVD
receaive ACK
v FIN send nothing
receive
il e ESTABLISHED

Figure3.5-12: A typical sequence of TCP states visited by a server-side TCP

This completes our introduction to TCP. In Section 3.7 we will return to TCP and look at TCP congestion control in some depth. Before doing so, in
the next section we step back and examine congestion control issuesin a broader context.
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TCP Flow Control 3

TCP Fl ow Contr ol

NOTES:

1. Host B comsumes datain 2Kbyte chunks at random times.

2. When Host A receives an acknowledgment with WIN=0, Host A sends a packet with one
byte of data. It is assumed for simplicity, that this one byte is not comsumed by the
receiver.
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3.6 Principles of Congestion Control

In the previous sections, we've examined both the general principles and specific TCP mechanisms used to provide for a
reliable data transfer servicein the face of packet loss. We mentioned earlier that , in practice, such losstypically results
from the overflowing of router buffers as the network becomes congested. Packet retransmission thus treats a symptom of
network congestion (the loss of a specific transport-layer packet) but does not treat the cause of network congestion -- too
many sources attempting to send data at too high arate. To treat the cause of network congestion, mechanisms are needed
to throttle the sender in the face of network congestion.

In this section, we consider the problem of congestion control in ageneral context, seeking to understand why congestion is
a"bad thing," how network congestion is manifested in the performance received by upper-layer applications, and various
approaches that can be taken to avoid, or react to, network congestion. This more general study of congestion control is
appropriate since, as with reliable data transfer, it is high on the "top-10" list of fundamentally important problemsin
networking. We conclude this section with a discussion of congestion control in the ATM ABR protocol. The following
section contains a detailed study of TCP's congestion control algorithm.

3.6.1 The Causes and the "Costs" of Congestion

Let's begin our general study of congestion control by examing three increasingly complex scenarios in which congestion
occurs. In each case, we'll ook at why congestion occurs in the first place, and the "cost" of congestion (in terms of
resources not fully utilized and poor performance received by the end systems).

Scenario 1: Two senders, a router with infinte buffers

We begin by considering perhaps the simplest congestion scenario possible: two hosts (A and B) each have a connection
that share a single hop between source and destination, as shown in Figure 3.6-1.

Host A o
Ay Original data Mot
Host B
@ @
; ()
H S
router with

infinite buffers

Figure 3.6-1: Congestion scenario 1. two connections sharing a single hop with infinte buffers

Let's assume that the application in Host A is sending data into the connection (e.g., passing data to the transport-level
protocol via asocket) at an average rate of A, bytes/sec. These data are "original” in the sense that each unit of datais sent
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into the socket only once. The underlying transport-level protocol isasimple one: datais encapsulated and sent; no error
recovery (e.g., retransmission), flow control, or congestion control is performed. Host B operatesin asimilar manner and
we assume for simplicity that it too is sending at arate of  A;, bytes/sec. Packets from hosts A and B pass through a router
and over a shared outgoing link of capacity C. The router has buffers that allow it to store incoming packets when the
packet arrival rate exceeds the outgoing link's capacity. In thisfirst scenario, we'll assume that the router has an infinite
amount of buffer space.

C/24
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Figure 3.6-2: Congestion scenario 1: throughtput and delay as a function of host sending rate

Figure 3.6-2 plots the performance of Host A's connection under thisfirst scenario. The left graph plots the per -
connection throughput (number of bytes per second at the receiver) as afunction of the connection sending rate. For a
sending rate between zero and C/2, the throughput at the receiver equals the sender's sending rate - everything sent by the
sender isreceived at the receiver with afinite delay. When the sending rate is above C/2, however, the throughput is only
C/2. Thisupper limit on throughput is a consequence of the sharing of link capacity between two connections - the link
simply can not deliver packetsto areceiver at a steady state rate that exceeds C/2. No matter how high Hosts A and B set
their sending rates, they will each never see athroughput higher than C/2.

Achieving a per-connection throughput of C/2 might actually appear to be a"good thing," asthelink isfully utilized in
delivering packets to their destinations. The right graph in Figure 3.6-2, however, shows the consequences of operating
near link capacity. Asthe sending rate approaches C/2 (from the left), the average delay becomes larger and larger. When
the sending rate exceeds C/2, the average number of queued packetsin the router is unbounded and the average delay
between source and destination becomes infinite (assuming that the connections operate at these sending rates for an
infinite period of time). Thus, while operating at an aggregate throughput of near C may be ideal from athroughput
standpoint, it isfar from ideal from a delay standpoint. Evenin this (extremely) idealized scenario, we've already found
one cost of a congested network - large queueing delays are experienced as the packet arrival rate nears the link capacity.

Scenario 2: Two senders, a router with finite buffers

Let us now dlightly modify scenario 1 in the following two ways. First, the amount of router buffering is assumed to be
finite. Second, we assume that each connection isreliable. If a packet containing atransport-level segment is dropped at
the router, it will eventually be retransmitted by the sender. Because packets can be retransmitted, we must now be more
careful with our use of the term "sending rate." Specifically, let us again denote the rate at which the application sends
original datainto the socket by A;,, bytes/sec. Therate at which the transport layer sends segments (containing original data
or retransmitted data) into the network will be denoted A, bytes/sec. A;,,' is sometimes referred to as the offered load to

the network.
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Figure 3.6-3: Scenario 2: two hosts (with retransmissions) and arouter with finite buffers
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Figure 3.6-4: Scenario 2 performance: (a) no retransmissions
(b) only needed retransmisisons (c) extraneous, undeeded retransmissions

The performance realized under scenario 2 will now depend strongly on how retransmission is performed. First, consider
the unreadlistic case that Host A is able to somehow (magically!) determine whether or not a buffer isfree in the router and

thus sends a packet only when a buffer isfree. In thiscase, no loss would occur, Aj, would be equal to A;, ', and the
throughput of the connection would be equal to A;,. This caseis shown in Figure 3.6-4(a). From athroughput standpoint,

performance isideal - everything that is sent is received. Note that the average host sending rate can not exceed C/2 under
this scenario, since packet loss is assumed never to occur.
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Consider next the slightly more redlistic case that the sender retransmits only when a packet is known for certain to be lost.
(Again, thisassumption isabit of astretch. However, it possiible that the sending host might set its timeout large enough
to be virtually assured that a packet that has not been ACKed has been lost.) In this case, the performance might look
something like that shown in Figure 3.6-4(b). To appreciate what is happening here, consider the case that the offered
load, Aj,, (therate of original data transmission plus retransmissions), equals .6C. According to Flgure 3.6-4(b), at this

value of the offered load, the rate at which data are delivered to the receiver application is C/3. Thus, out of the .6C units
of data transmitted, .3333 bytes/sec (on average) are original data and .26666 bytes per second (on average) are
retransmitted data. We see here another "cost” of a congested network - the sender must perform retransmissionsin order
to compensate for dropped (lost) packets due to buffer overflow.

Finally, let us consider the more realistic case that the sender may timeout prematurely and retransmit a packet that has
been delayed in the queue, but not yet lost. In this case, both the original data packet and the retransmission may both
reach the receiver. Of course, the receiver needs but one copy of this packet and will discard the retransmission. In this
case, the "work™ done by the router in forwarding the retransmitted copy of the origina packet was "wasted," as the
receiver will have already received the original copy of this packet. The router would have better used the link
transmission capacity transmitting a different packet instead. Here then is yet another "cost" of a congested network -
unneeded retransmissions by the sender in the face of large delays may cause a router to use its link bandwidth to forward
uneeded copiesof a packet. Figure 3.6.4(c) shows the throughput versus offered load when each packet is assumed to be
forwarded (on average) at least twice by the router. Since each packet is forwarded twice, the throughput achieved will be
bounded above by the two-segment curve with the asymptotic value of C/4.

Scenario 3: Four senders, routers with finite buffers, and multihop paths

In our final congestion scenario, four hosts transmit packets, each over overlapping two-hop paths, as shown in Figure 3.6-
5. We again assume that each host uses a timeout/retransmission mechanism to implement a reliable data transfer service,
that all hosts have the same value of A;,,, and that all router links have capacity C bytes/sec.

Host B

)

(

Host D

Host C

LLLILL NS
~J
N
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Figure 3.6-5: Four senders, routers with finite buffers, and multihop paths

L et us consider the connection from Host A to Host C, passing through Routers R1 and R2. The A-C connection shares
router R1 with the D-B connection and shares router R2 with the B-D connection. For extremely small valuesof A, ,
buffer overflows are rare (asin congestion scenarios 1 and 2), and the throughput approximately equals the offered load.
For slightly larger values of A, , the corresponding throughput is also larger, as more original datais being transmitted
into the network and delivered to the destination, and overflows are still rate . Thus, for small values of A, , anincreasein

Aipresultsinanincreasein A .

Having considered the case of extremely low traffic, let us next examine the case that A;, (and hence A;") is extremely
large. Consider router R2. The A-C traffic arriving to router R2 (which arrives at R2 after being forwarded from R1) can
have an arrival rate at R2 that is at most C, the capacity of the link from R1 to R2, regardless of the value of A;,. If A, is

extremely large for all connections (including the B-D connection), then the arrival rate of B-D traffic at R2 can be much
larger than that of the A-C traffic. Because the A-C and B-D traffic must compete at router R2 for the limited amount of
buffer space, the amount of A-C traffic that successfully gets through R2 (i.e., is not lost due to buffer overflow) becomes
smaller and smaller as the offered load from B-D gets larger and larger. In the limit, as the offered load approaches
infinity, an empty buffer at R2 isimmediately filled by a B-D packet and the throughput of the A-C connection at R2 goes
to zero. This, inturn, implies that the A-C end-end throughput goesto zero in the limt of heavy traffic. These
considerations give rise to the offered load versus throughput tradeoff shown below in Figure 3.6-6.

C/2-

7\’ou’r

Air

Figure 3.6-6: Scenario 2 performance with finite buffers and multihope paths

The reason for the eventual decrease in throughput with increasing offered load is evident when one considers the amount
of wasted "work™ done by the network. In the high traffic scenario outlined above, whenever a packet is dropped at a
second-hop router, the "work" done by the first-hop router in forwarding a packet to the second-hop router ends up being
"wasted." The network would have been equally well off (more accurately, equally as bad off) if the first router had simply
discarded that packet and remained idle. More to the point, the transmission capacity used at the first router to forward the
packet to the second router could have been much more profitably used to transmit a different packet. (For example, when
selecting a packet for transmission, it might be better for arouter to give priorty to packets that have already traversed
some number of upstream routers). So here we see yet another cost of dropping a packet due to congestion - when a packet
isdropped along a path, the transmission capacity that was used at each of the upstream routers to forward that packet to
the point at which it is dropped ends up having been wasted.
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3.6.2 Approaches Toward Congestion Control

In Section 3.7, we will examine TCP's specific approach towards congestion control in great detail. Here, we identify the
two broad approaches that are taken in practice towards congestion control, and discuss specific network architectures and
congestion control protocols embodying these approaches.

At the broadest level, we can distinguish among congestion control approaches based on the whether or not the network
layer provides any explicit assistance to the transport layer for congestion control purposes:

. End-end congestion control. In an end-end approach towards congestion control, the network layer provides no
explicit support to the transport layer for congestion control purposes. Even the presence of congestion in the
network must be inferred by the end systems based only on observed network behavior (e.g., packet loss and
delay). Wewill seein Section 3.7 that TCP must necessarily take this end-end approach towards congestion
control, since the IP layer provides no feedback to the end systems regarding network congestion. TCP segment
loss (as indicated by atimeout or atriple duplicate acknowledgement) is taken as an indication of network
congestion and TCP decreases its window size accordingly. We also see that new proposals for TCP use increasing
round-trip delay values as indicators of increased network congestion.

. Network-assisted congestion control. With network-assisted congestion control, network-layer components (i.e.,
routers) provide explicit feedback to the sender regarding the congestion state in the network. This feedback may
be as ssimple as a single bit indicating congestion at alink . This approach was taken in the early IBM SNA
[Schwartz 1982] and DEC DECnet [Jain 1989] [Ramakrishnan 1990] architectures, was recently proposed for TCP/
IP networks [Floyd 1994] [Ramakrishnan 1998], and isused in ATM ABR congestion control as well, as discussed
below. More sophisticated network-feedback is also possible. For example, one form of ATM ABR congestion
control that we will study shortly allows a router to explictly inform the sender of the transmission rate it (the
router) can support on an outgoing link.

For network-assisted congestion control, congestion information is typically fed back from the network to the sender in one
of two ways, as shown in Figure 3.6-7. Direct feedback may be sent from a network router to the sender. Thisform of
notification typically takes the form of a choke packet (essentially saying, "I'm congested!"). The second form of
notification occurs when arouter marks/updates afield in a packet flowing from sender to receiver to indiciate congestion.
Upon receipt of a marked packet, the receiver then notifies the sender of the congestion indication. Note that this latter
form of notification takes up to afull round-trip time.
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Figure 3.6-7: Two feedback pathways for network-indicated congestion information

3.6.3 ATM ABR Congestion Control

Our detailed study of TCP congestion control in Section 3.7 will provide an in-depth case study of an end-end approach
towards congestion control. We conclude this section with a brief case study of the network-assisted congestion control
mechanisms used in ATM ABR (Available Bit Rate) service. ABR has been designed as an elastic data transfer servicein a
manner reminiscent of TCP. When the network is underloaded, ABR service should be able to take advantage of the spare
available bandwidth; when the network is congested, ABR service should throttle its transmission rate to some
predetermined minimum transmititon rate. A detailed tutorial on ATM ABR congestion control and traffic management is

provided in [Jain 1996].

Figure 3.6-8 shows the framework for ATM ABR congestion control. 1n our discussion below we adopt ATM terminology
(e.g., using the term "switch" rather than "router," and the term "call" rather than "packet). With ATM ABR service, data
cells are transmitted from a source to a destination through a series of intermediate switches. Interpersed with the data cells
are so-called RM (Resour ce M anagement) cells; we will see shortly that these RM cells can be used to convey
congestion-related information among the hosts and switches. When an RM cell is at adestination, it will be "turned
around" and sent back to the sender (possibly after the destination has modified the contents of the RM cell). It isaso
possible for aswitch to generate an RM cell itself and send this RM cell directly to asource. RM cells can thus be used to
provide both direct network feedback and network-feedback-via-the-receiver, as shown in Figure 3.6-8.
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Figure 3.6-8: Congestion control framework for ATM ABR service

ATM ABR congestion control is arate-based approach. That is, the sender explicitly computes a maximum rate at which it
can send and regulates itself accordingly. ABR provides three mechanisms for signaling congestion-related information
from the siwtches to the receiver:

. EFCI bit. Each data cell containsan EFCI (Explicit Forward Congestion Indication) bit. A congested network
switch can set the EFCI bit in adata cell to 1 to signal congestion to the destination host. . The destination must
check the EFCI bit in all received data cells. When an RM cell arrives at the destination, if the most recently-
received data cell had the EFCI bit set to 1, then the destination sets the Cl (Congestion Indication) bit of the RM
cell to 1 and sends the RM cell back to the sender. Using the EFCI in data cells and the Cl bit in RM cells, a sender
can thus be notified about congestion at a network switch.

. Cl and NI bits. Asnoted above, sender-to-receiver RM cells are interpersed with data cells. The rate of RM cell
interspersion is a tunable parameter, with one RM cell every 32 data cells being the default value. These RM cells
have aCl bit and aNI (No Increase) bit that can be set by a congested network switch. Specifically, a switch can
set the NI bit inapassing RM cell tol under mild congestion and can set the ClI bit to 1 under severe congestion
conditions. When a destination host receives an RM cell, it will send the RM cell back to the sender with its Cl and
NI bitsintact (except that Cl may be set to 1 by the destination as a result of the EFCI mechanism decribed above).

. Explicit Rate (ER) setting. Each RM cell aso contains a 2-byte ER (Explicit Rate) field. A congested switch may
lower the value contained in the ER field in apassing RM cell. In this manner, the ER field will be set to the
minimum supportable rate of all switches on the source-to-destination path.

An ATM ABR source adjusts the rate at which it can send cells as afunction of the CI, NI and ER valuesin areturned RM

cell. Therulesfor making this rate adjustment are rather complicated and tedious. The interested reader isreferred to [Jain
1996] for details.
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3.7 TCP Congestion Control

In this section we return to our study of TCP. Aswe learned in Section 3.5, TCP provides areliable transport service
between two processes running on different hosts. Another extremely important component of TCP isits congestion control
mechanism. Aswe indicated in the previous section, TCP must use end-to-end congestion control rather than network-
assisted congestion control, since the IP layer provides no feedback to the end systems regarding network congestion.
Before diving into the details of TCP congestion control, let's first get a high-level view of TCP's congestion control
mechanism, as well as the overall goal that TCP strives for when multiple TCP connections must share the bandwidth of a
congested link. .

A TCP connection controls its transmission rate by limiting its number of transmitted-but-yet-to-be-acknowledged

segments. Let us denote this number of permissible unacknowledged segments as w, often referred to as the TCP window
size. ldeally, TCP connections should be alowed to transmit as fast as possible (i.e., to have as large a number of
outstanding unacknowledged packets as possible) as long as segments are not lost (dropped at routers) due to congestion. In
very broad terms, a TCP connection starts with a small value of w and then "probes’ for the existence of additional unused
link bandwidth at the links on its end-to-end path by increasing w. A TCP connection continues to increase w until a segment
loss occurs (as detected by atimeout or duplicate acknowledgements). When such aloss occurs, the TCP connection
reduces w to a"safe level" and then begins probing again for unused bandwidth by slowly increasing w .

An important measure of the performance of a TCP connection isits throughput - the rate at which it transmits data from the
sender to thereceiver. Clearly, throughput will depend on the value of w. W. If a TCP sender transmits all w segments
back-to-back, it must then wait for one round trip time (RTT) until it receives acknowledgments for these segments, at which
point it can send w additional segments. If a connection transmits w segments of size MSS bytes every RTT seconds, then
the connection's throughput, or transmission rate, is (W*MSS)/RTT bytes per second.

Suppose now that K TCP connections are traversing alink of capacity R. Suppose also that there are no UDP packets
flowing over thislink, that each TCP connection is transferring a very large amount of data, and that none of these TCP
connections traverse any other congested link. Ideally, the window sizesin the TCP connections traversing this link should
be such that each connection achieves athroughput of R/K. More generally, if a connection passes through N links, with link
n having transmission rate R, and supporting atotal of K,, TCP connections, then ideally this connection should achieve a

rate of R./K on the nth link. However, this connection's end-to-end average rate cannot exceed the minimum rate achieved
at al of the links along the end-to-end path. That is, the end-to-end transmission rate for this connectionis r = min{Ry/Ky,...,
Ry/Knt- The goal of TCP isto provide this connection with this end-to-end rate, r. (In actuality, the formulafor r is more

complicated, as we should take into account the fact that one or more of the intervening connections may be bottlenecked at
some other link that is not on this end-to-end path and hence can not use their bandwidth share, R/K,. In this case, the value

of r would be higher than min{R;/Ky,...,R\/Kn}- )

3.7.1 Overview of TCP Congestion Control

In Section 3.5 we saw that each side of a TCP connection consists of areceive buffer, a send buffer, and several variables

(LastByteRead, RcvWin, etc.) The TCP congestion control mechanism has each side of the connection keep track of two

additional variables: the congestion window and the threshold. The congestion window, denoted CongWin, imposes an

additional constraint on how much traffic a host can send into a connection. Specifically, the amount of unacknowledged

data that a host can have within a TCP connection may not exceed the minimum of CongWin and RcvWin, i.e.,
LastByteSent - LastByteAcked <= min{ CongWin, RevwWin}.
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The threshold, which we discussin detail below, isavariable that effects how CongWin grows.

Let us now look at how the congestion window evolves throughout the lifetime of a TCP connection. In order to focus on
congestion control (as opposed to flow control), let us assume that the TCP receive buffer is so large that the receive window
constraint can beignored. In this case, the amount of unacknowledged data hat a host can have within a TCP connection is
solely limited by CongWin. Further let's assume that a sender has a very large amount of data to send to areceiver.

Once a TCP connection is established between the two end systems, the application process at the sender writes bytes to the
sender's TCP send buffer. TCP grabs chunks of size M SS, encapsulates each chunk within a TCP segment, and passes the
segments to the network layer for transmission across the network. The TCP congestion window regulates the times at which
the segments are sent into the network (i.e., passed to the network layer). Initially, the congestion window is equal to one
MSS. TCP sends the first segment into the network and waits for an acknowledgement. If this segment is acknowledged
before its timer times out, the sender increases the congestion window by one M SS and sends out two maximum-size
segments. If these segments are acknowledged before their timeouts, the sender increases the congestion window by one
MSS for each of the acknowledged segments, giving a congestion window of four MSS, and sends out four maximum-sized
segments. This procedure continues as long as (1) the congestion window is below the threshold and (2) the
acknowledgements arrive before their corresponding timeouts.

During this phase of the congestion control procedure, the congestion window increases exponentialy fast, i.e., the
congestion window isinitialized to one MSS, after one RTT the window is increased to two segments, after two round-trip
times the window isincreased to four segments, after three round-trip times the window is increased to eight segments, etc.
This phase of the algorithm is called slow start because it begins with a small congestion window equal to one MSS. (The
transmission rate of the connection starts slowly but accelerates rapidly.)

The slow start phase ends when the window size exceed the value of threshold. Once the congestion window is larger than
the current value of threshold, the congestion window grows linearly rather than exponentially. Specifically, if wisthe
current value of the congestion window, and w is larger than threshold, then after w acknowledgements have arrived, TCP
replacesw withw + 1. This has the effect of increasing the congestion window by one in each RTT for which an entire
window's worth of acknowledgements arrives. This phase of the algorithm is called congestion avoidance.

The congestion avoidance phase continues as long as the acknowledgements arrive before their corresponding timeouts. But
the window size, and hence the rate at which the TCP sender can send, can not increase forever. Eventually, the TCP rate
will be such that one of the links along the path becomes saturated, and which point loss (and a resulting timeout at the
sender) will occur. When atimeout occurs, the value of threshold is set to half the value of the current congestion window,
and the congestion window is reset to one MSS. The sender then again grows the congestion window exponentially fast
using the slow start procedure until the congestion window hits the threshold.

In summary:

. When the congestion window is below the threshold, the congestion window grows exponentially.

. When the congestion window is above the threshold, the congestion window grows linearly.

. Whenever there is atimeout, the threshold is set to one half of the current congestion window and the congestion
window is then set to one.

If we ignore the owstart phase, we see that TCP essentially increases its window size by 1 each RTT (and thusincreasesits
transmission rate by an additive factor) when its network path is not congested, and decreases its window size by afactor of
two each RTT when the path is congested. For thisreason, TCPis often referred to as an additive-increase, multiplicative-
decrease (AIMD) algorithm.

file:///D)/Downl oads/Livros/computagao/Computer%20Netw...0A pproach%20Featuring%20the%620I nternet/congestion.html (2 of 15)20/11/2004 15:52:14



TCP Congestion Control

threshold

threshal d

Congestion window (in segments)

— oy o O -] O WD

I 1 |
101112 1314

[ I
o1 2 3 4 5
Mumber of transmissions

Figure 3.7-1: Evolution of TCP's congestion window

The evolution of TCP's congestion window isillustrated in Figure 3.7-1. In thisfigure, the threshold isinitially equal to
8*MSS. The congestion window climbs exponentially fast during slow start and hits the threshold at the third transmission.
The congestion window then climbs linearly until loss occurs, just after transmission 7. Note that the congestion window is
12* M SS when loss occurs. The threshold is then set to .5* CongWin = 6* M SS and the congestion window is set 1. And the
process continues. This congestion control algorithm is due to V. Jacobson [Jac88]; a number of modifications to Jacobson's

initial algorithm are described in [Stevens 1994, RFC 2581].

A Trip to Nevada: Tahoe, Reno and Vegas

The TCP congestion control algorithm just described is often referred to as Tahoe. One problem with the Tahoe algorithm is
that when a segment is lost the sender side of the application may have to wait along period of time for the timeout. For this
reason, avariant of Tahoe, called Reno, isimplemented by most operating systems. Like Tahoe, Reno sets its congestion
window to one segment upon the expiration of atimer. However, Reno also includes the fast retransmit mechanism that we
examined in Section 3.5. Recall that fast retransmit triggers the transmission of a dropped segment if three duplicate ACKs
for a segment are received before the occurrence of the segment's timeout. Reno also employs afast recovery mechanism,
which essentially cancels the slow start phase after afast retransmission. The interested reader is encouraged so see [Stevens
1994, RFC 2581] for details.

Most TCP implementations currently use the Reno algorithm. Thereis, however, another algorithm in the literature, the
Vegas algorithm, that can improve Reno's performance. Whereas Tahoe and Reno react to congestion (i.e., to overflowing
router buffers), Vegas attempts to avoid congestion while maintaining good throughput. The basic idea of Vegasisto (1)
detect congestion in the routers between source and destination before packet |oss occurs, and (2) lower the rate linearly
when thisimminent packet loss is detected. Imminent packet loss is predicted by observing the round-trip times -- the longer
the round-trip times of the packets, the greater the congestion in the routers. The Vegas agorithm is discussed in detail in
[Brakmo 1995] ; astudy of its performanceis givenin [Ahn 1995]. Asof 1999, Vegasis not a part of the most popular TCP
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implementations.

We emphasize that TCP congestion control has evolved over the years, and is still evolving. What was good for the Internet
when the bulk of the TCP connections carried SMTP, FTP and Telnet traffic is not necessarily good for today's Web-
dominated Internet or for the Internet of the future, which will support who-knows-what kinds of services.

Does TCP Ensure Fairness?

In the above discussion, we noted that the goal of TCP's congestion control mechanism is to share a bottleneck link's
bandwidth evenly among the TCP connections traversing that link. But why should TCP's additive increase, multiplicative
decrease algorithm achieve that goal, particularly given that different TCP connections may start at different times and thus
may have different window sizes at agiven point in time? [Chiu 1989] provides an elegant and intuitive explanation of why
TCP congestion control convergesto provide an equal share of a bottleneck link's bandwidth among competing TCP
connections.

Let's consider the simple case of two TCP connections sharing a single link with transmission rate R, as shown in Figure 3.7-
2. Welll assume that the two connections have the same MSS and RTT (so that if they have the same congestion window
size, then they have the same throughput), that they have alarge amount of datato send, and that no other TCP connections
or UDP datagrams traverse this shared link. Also, we'll ignore the slow start phase of TCP, and assume the TCP connections
are operating in congestion avoidance mode (additive increase, multiplicative decrease) at all times.

TCP Connection 1

Link
capacity
TCP Connection 2 R

Figure 3.7-2: Two TCP connections sharing a single bottleneck link

Figure 3.7-3 plots the throughput realized by the two TCP connections. If TCPisto equally share the link bandwidth
between the two connections, then the realized throughput should fall along the 45 degree arrow ("equal bandwidth share")
emanating from the origin. Ideadly, the sum of the two throughputs should equal R (certainly, each connection receiving an
equal, but zero, share of the link capacity is not a desirable situation!), so the goal should be to have the achieved
throughputs fall somewhere near the intersection of the "equal bandwidth share" line and the "full bandwidth utilization” line
in. Figure 3.7-3.

Suppose that the TCP window sizes are such that at a given point in time, connections 1 and 2 realize throughputs indicated
by point A in Figure 3.7-3. Because the amount of link bandwidth jointly consumed by the two connectionsislessthan R,
no loss will occur, and both connections will increase their window by 1 per RTT as aresult of TCP's congestion avoidance
algorithm. Thus, the joint throughput of the two connections proceeds along a 45 degree line (equal increase for both
connections) starting from point A. Eventually, the link bandwidth jointly consumed by the two connections will be greater
than R and eventually packet loss will occur. Suppose that connections 1 and 2 experience packet loss when they realize
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throughputs indicated by point B. Connections 1 and 2 then decrease their windows by a factor of two. The resulting
throughputs realized are thus at point C, halfway along a vector starting at B and ending at the origin. Because the joint
bandwidth useislessthan R at point C, the two connections again increase their throughputs along a 45 degree line starting
from C. Eventually, losswill again occur, e.g., a point D, and the two connections again decrease their window sizes by a
factor of two. And so on. You should convince yourself that the bandwidth realized by the two connections eventually
fluctuates along the equal bandwidth share line. Y ou should also convince yourself that the two connections will converge to
this behavior regardless of where they being in the two-dimensional space! Although a number of idealized assumptions lay
behind this scenario, it still provides an intuitive feel for why TCP resultsin an equal sharing of bandwidth among
connections.

A equal

Full Npandwidih
bandwidth <7 share
ufilization
line

=
|

: >
I

Connection 2 throughput

Connection 1 throughput R

Figure 3.7-3: Throughput realized by TCP connections 1 and 2

In our idealized scenario, we assumed that only TCP connections traverse the bottleneck link, and that only asingle TCP
connection is associated with a host-destination pair. In practice, these two conditions are typically not met, and client-server
applications can thus obtain very unequal portions of link bandwidth.

Many network applications run over TCP rather than UDP because they want to make use of TCP's reliable transport service.
But an application developer choosing TCP gets not only reliable data transfer but al'so TCP congestion control. We have
just seen how TCP congestion control regulates an application’s transmission rate via the congestion window mechanism.
Many multimedia applications do not run over TCP for this very reason -- they do not want their transmission rate throttled,
even if the network is very congested. In particular, many Internet telephone and Internet video conferencing applications
typically run over UDP. These applications prefer to pump their audio and video into the network at a constant rate and
occasionally lose packets, rather than reduce their ratesto "fair" levels at times of congestion and not lose any packets. From
the perspective of TCP, the multimedia applications running over UDP are not being fair -- they do not cooperate with the
other connections nor adjust their transmission rates appropriately. A major challenge in the upcoming years will be to
develop congestion control mechanisms for the Internet that prevent UDP traffic from bringing the Internet's throughput to a
grinding halt.
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But even if we could force UDP traffic to behave fairly, the fairness problem would still not be completely solved. Thisis
because there is nothing to stop an application running over TCP from using multiple parallel connections. For example,
Web browsers often use multiple parallel TCP connections to transfer a Web page. (The exact number of multiple
connections is configurable in most browsers.) When an application uses multiple parallel connections, it gets alarger
fraction of the bandwidth in a congested link. As an example consider alink of rate R supporting 9 on-going client-server
applications, with each of the applications using one TCP connection. If a new application comes along and also uses one
TCP connection, then each application approximately gets the same transmission rate of R/10. But if this new application
instead uses 11 parallel TCP connections, then the new application gets an unfair allocation of R/2. Because Web trafficis
so pervasive in the Internet, multiple parallel connections are not uncommon.

Macroscopic Description of TCP Dynamics

Consider sending avery large file over a TCP connection. If we take a macroscopic view of the traffic sent by the source,
we can ignore the slow start phase. Indeed, the connection isin the slow-start phase for arelatively short period of time
because the connection grows out of the phase exponentially fast. When we ignore the slow-start phase, the congestion
window grows linearly, gets chopped in half when loss occurs, grows linearly, gets chopped in half when loss occurs, etc.
This gives rise to the saw-tooth behavior of TCP [Stevens 1994] shown in Figure 3.7-1.

Given this sawtooth behavior, what is the average throuphput of a TCP connection? During a particular round-trip interval,
the rate at which TCP sends data is function of the congestion window and the current RTT: when the window sizeis
w*MSS and the current round-trip time is RTT, then TCP's transsmission rate is (W* MSS)/RTT. During the congestion
avoidance phase, TCP probes for additional bandwidth by increasing w by one each RTT until loss occurs; denote by W the
value of w at which loss occurs. Assuming that the RTT and W are approximately constant over the duration of the
connection, the TCP transmission rate ranges from (W*MSS)/(2RTT) to (W*MSS)/RTT.

These assumputions lead to a highly-simplified macroscopic model for the steady-state behavior of TCP: the network drops
a packet from the connection when the connection's window size increases to W* M SS; the congestion window isthen cut in
half and then increases by one M SS per round-trip time until it again reaches W. This process repeats itself over and over
again. Because the TCP throughput increases linearly between the two extreme values, we have:

average throughput of a connection = (.75*W*MSS)/RTT.
Using this highly idealized model for the steady-state dynamics of TCP, we can also derive an interesting expression that

relates a connection's loss rate to its available bandwidth [Mahdavi 1997]. This derivation is outlined in the homework
problems.

3.7.2 Modeling Latency: Static Congestion Window

Many TCP connections transport relatively small files from one host to another. For example, with HTTP/1.0 each object in
aWeb page is transported over a separate TCP connection, and many of these objects are small text files or tiny icons. When
transporting asmall file, TCP connection establishment and slow start may have a significant impact on the latency. In this
section we present an analytical model that quantifies the impact of connection establishment and slow start on latency. For a
given object, we define the latency as the time from when the client initiates a TCP connection until when the client receives
the requested object in its entirety.

The analysis presented here assumes that that the network is uncongested, i.e., the TCP connection transporting the object
does not have to share link bandwidth with other TCP or UDP traffic. (We comment on this assumption below.) Also, in
order to not to obscure the central issues, we carry out the analysis in the context of the simple one-link network as shown in
Figure 3.7-4. (Thislink might model a single bottleneck on an end-to-end path. See also the homework problems for an
explicit extention to the case of multiple links.)
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server R bps client

Figure 3.7-4. A simple one-link network connecting a client and a server
We also make the following simplifying assumptions:

1. The amount of datathat the sender can transmit is solely limited by the sender's congestion window. (Thus, the TCP
receive buffers are large.)

2. Packets are neither lost nor corrupted, so that there are no retransmissions.

3. All protocol header overheads -- including TCP, 1P and link-layer headers -- are negligible and ignored.

4. The object (that is, file) to be transferred consists of an integer number of segments of size MSS (maximum segment
size).

5. Theonly packets that have non-negligible transmission times are packets that carry maximum-size TCP segments.
Request packets, acknowledgements and TCP connection establishment packets are small and have negligible
transmission times.

6. Theinitial threshold in the TCP congestion control mechanism is alarge value which is never attained by the
congestion window.

We also introduce the following notation:

1. The size of the object to be transferred is O hits.

2. The MSS (maximum size segment) is S bits (e.g., 536 bytes).

3. Thetransmission rate of the link from the server to the client is R bps.
4. Theround-trip timeisdenoted by RTT.

In this section we define the RTT to be the time elapsed for a small packet to travel from client to server and then back to the
client, excluding the transmission time of the packet. It includes the two end-to-end propagation delays between the two end
systems and the processing times at the two end systems. We shall assume that the RTT is also equal to the roundtrip time
of a packet beginning at the server.

Although the analysis presented in this section assumes an uncongested network with a single TCP connection, it
nevertheless sheds insight on the more realistic case of multi-link congested network. For a congested network, R roughly
represents the amount of bandwidth recieved in steady state in the end-to-end network connection; and RTT represents a
round-trip delay that includes queueing delays at the routers preceding the congested links. In the congested network case,
we model each TCP connection as a constant-bit-rate connection of rate R bps preceded by a single slow-start phase. (Thisis
roughly how TCP Tahoe behaves when |osses are detected with triplicate acknowledgements.) In our numerical examples
we use values of R and RTT that reflect typical values for a congested network.

Before beginning the formal analysis, let ustry to gain some intuition. Let us consider what would be the latency if there
were no congestion window constraint, that is, if the server were permitted to send segments back-to-back until the entire
object is sent? To answer this question, first note that one RTT isrequired to initiate the TCP connection. After one RTT the
client sends arequest for the object (which is piggybacked onto the third segment in the three-way TCP handshake). After a
total of two RTTsthe client begins to receive data from the server. The client receives data from the server for a period of
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time O/R, the time for the server to transmit the entire object. Thus, in the case of no congestion window constraint, the total
latency is2 RTT + O/R. This represents alower bound; the slow start procedure, with its dynamic congestion window, will
of course elongate this latency.

Static Congestion Window

Although TCP uses a dynamic congestion window, it isinstructive to first analyze the case of a static congestion window.
Let W, apositive integer, denote a fixed-size static congestion window. For the static congestion window, the server is not
permitted to have more than W unacknowledged outstanding segments. When the server receives the request from the client,
the server immediately sends W segments back-to-back to the client. The server then sends one segment into the network for
each acknowledgement it receives from the client. The server continues to send one segment for each acknowledgement until
all of the segments of the object have been sent. There are two cases to consider:

1. WS/R>RTT + S/R. In this case, the server receives an acknowledgement for the first segment in the first window
before the server completes the transmission of the first window.

2. WSR <RTT + SR. Inthis case, the server transmits the first window's worth of segments before the server receives
an acknowledgement for the first ssgment in the window.

Let usfirst consider Case 1, which isillustrated in Figure 3.7-5.. In this figure the window sizeis W = 4 segments.

irdtiate TCF
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D RTT
teruest e
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Figure 3.7-5: the case that WS/R> RTT + SR

One RTT isrequired to initiate the TCP connection. After one RTT the client sends a request for the object (whichis
piggybacked onto the third segment in the three-way TCP handshake). After atotal of two RTTs the client begins to receive
data from the server. Segments arrive periodically from the server every S/R seconds, and the client acknowledges every
segment it receives from the server. Because the server receives the first acknowledgement before it completes sending a
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window's worth of segments, the server continues to transmit segments after having transmitted the first window's worth of
segments. And because the acknowledgements arrive periodically at the server every /R seconds from the time when the
first acknowledgement arrives, the server transmits segments continuously until it has transmitted the entire object. Thus,
once the server startsto transmit the object at rate R, it continues to transmit the object at rate R until the entire object is
transmitted. The latency thereforeis2 RTT + O/R.

Now let us consider Case 2, which isillustrated in Figure 3.7-6. In this figure, the window size is W=2 segments.
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Figure 3.7-6: the case that WSR< RTT + SR

Once again, after atotal of two RTTs the client begins to receive segments from the server. These segments arrive
peridodically every S/R seconds, and the client acknowledges every segment it receives from the server. But now the server
completes the transmission of the first window before the first acknowledgment arrives from the client. Therefore, after
sending awindow, the server must stall and wait for an acknowledgement before resuming transmission. When an
acknowledgement finally arrives, the server sends a new segment to the client. Once the first acknowledgement arrives, a
window's worth of acknowledgements arrive, with each successive acknowledgement spaced by S/R seconds. For each of
these acknowledgements, the server sends exactly one segment. Thus, the server aternates between two states. atransmitting
state, during which it transmits W segments; and a stalled state, during which it transmits nothing and waits for an
acknowledgement. The latency is equal to 2 RTT plus the time required for the server to transmit the object, O/R, plus the
amount of time that the server isin the stalled state. To determine the amount of time the server isin the stalled state, let K =
O/WS; if O/WSis not an integer, then round K up to the nearest integer. Note that K is the number of windows of data there
arein the object of size O. The server isin the stalled state between the transmission of each of the windows, that is, for K-1
periods of time, with each period lasting RTT- (W-1)S/R (see above diagram). Thus, for Case 2,

Latency =2 RTT + O/R+ (K-1)[SSR+ RTT -W SR] .

Combining the two cases, we obtain
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Latency =2 RTT + O/R + (K-1) [SR+ RTT - W S/R]*
where [x]™ = max(x,0).

This completes our analysis of static windows. The analysis below for dynamic windows is more complicated, but parallels
the analysis for static windows.

3.7.3 Modeling Latency: Dynamic Congestion Window

We now investigate the latency for afile transfer when TCP's dynamic congestion window isin force. Recall that the server
first starts with a congestion window of one segment and sends one segment to the client. When it receives an
acknowledgement for the segment, it increases its congestion window to two segments and sends two segments to the client
(spaced apart by S/R seconds). Asit receives the acknowledgements for the two segments, it increases the congestion
window to four segments and sends four segments to the client (again spaced apart by S/R seconds). The process continues,
with the congestion window doubling every RTT. A timing diagram for TCPisillustrated in Figure 3.7-7.
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Figure 3.7-7: TCP timing during slow start

Note that O/S isthe number of segmentsin the object; in the above diagram, O/S =15. Consider the number of segments
that arein each of the windows. The first window contains 1 segment; the second window contains 2 segments; the third
window contains 4 segments. More generally, the kth window contains 2k-1 segments. Let K be the number of windows that
cover the object; in the preceding diagram K=4. In general we can express K in terms of O/S asfollows:
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After transmitting awindow's worth of data, the server may stall (i.e., stop transmitting) while it waits for an
acknowledgement. In the preceding diagram, the server stalls after transmitting the first and second windows, but not after
transmitting the third. Let us now calculate the amount of stall time after transmitting the kth window. The time from when
the server begins to transmit the kth window until when the server receives an acknowledgement for the first segment in the
window is S/R + RTT. The transmission time of the kth window is (S/R) 2k-1. The stall time is the difference of these two
guantities, that is,

)
S

[SIR + RTT - 2k-L(S/R)]*.

The server 